209 research outputs found

    Future enhanced clinical role of pharmacists in emergency departments in England:multi-site observational evaluation

    Get PDF
    Background There are concerns about maintaining appropriate clinical staffing levels in Emergency Departments. Pharmacists may be one possible solution. Objective To determine if Emergency Department attendees could be clinically managed by pharmacists with or without advanced clinical practice training. Setting Prospective 49 site cross-sectional observational study of patients attending Emergency Departments in England. Method Pharmacist data collectors identified patient attendance at their Emergency Department, recorded anonymized details of 400 cases and categorized each into one of four possible options: cases which could be managed by a community pharmacist; could be managed by a hospital pharmacist independent prescriber; could be managed by a hospital pharmacist independent prescriber with additional clinical training; or medical team only (unsuitable for pharmacists to manage). Impact indices sensitive to both workload and proportion of pharmacist manageable cases were calculated for each clinical group. Main outcome measure Proportion of cases which could be managed by a pharmacist. Results 18,613 cases were observed from 49 sites. 726 (3.9%) of cases were judged suitable for clinical management by community pharmacists, 719 (3.9%) by pharmacist prescribers, 5202 (27.9%) by pharmacist prescribers with further training, and 11,966 (64.3%) for medical team only. Impact Indices of the most frequent clinical groupings were general medicine (13.18) and orthopaedics (9.69). Conclusion The proportion of Emergency Department cases that could potentially be managed by a pharmacist was 36%. Greatest potential for pharmacist management was in general medicine and orthopaedics (usually minor trauma). Findings support the case for extending the clinical role of pharmacists

    Mesenchymal stem cells from tumor microenvironment favour breast cancer stem cell proliferation, cancerogenic and metastatic potential, via ionotropic purinergic signalling

    Get PDF
    Interaction between tumor cells and the microenvironment is key in initiation, progression, and invasiveness of cancer. In particular, mesenchymal stem cells (MSCs) are recruited to the sites of developing tumors, thus promoting metastasis formation. Although it is well known that MSCs migrate and integrate in the tumor microenvironment (TME), their fate and function inside the tumor is still not clear. In this study, we analyzed the role played by MSCs in breast cancer oncogenesis. Data indicate that interaction of breast cancer cells with MSCs results in an increased proliferation and metabolic activity of breast cancer cells, partially due to MSC-derived microvesicles that are shed in the TME. Moreover, we addressed the question of whether we could modulate such interaction by acting on P2X-mediated intercellular communication. By inhibiting P2X-mediated purinergic signaling, we succeeded in reducing both the cancerogenic as well as the metastatic potential of breast cancer cells co-cultured with MSCs, in 2D as well as in 3D in vitro models. Data obtained demonstrate for the first time that the trophic effect of MSCs on breast cancer cell growth is exerted via ionotropic purinergic signaling, thus suggesting the inhibition of the purinergic signaling system as a potential target for therapeutic intervention

    Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is a debilitating fatal X-linked muscle disorder. Recent findings indicate that IGFs play a central role in skeletal muscle regeneration and development. Among IGFs, insulinlike growth factor 2 (IGF2) is a key regulator of cell growth, survival, migration and differentiation. The type 2 IGF receptor (IGF2R) modulates circulating and tissue levels of IGF2 by targeting it to lysosomes for degradation. We found that IGF2R and the store-operated Ca2+ channel CD20 share a common hydrophobic binding motif that stabilizes their association. Silencing CD20 decreased myoblast differentiation, whereas blockade of IGF2R increased proliferation and differentiation in myoblasts via the calmodulin/calcineurin/NFAT pathway. Remarkably, anti-IGF2R induced CD20 phosphorylation, leading to the activation of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) and removal of intracellular Ca2+. Interestingly, we found that IGF2R expression was increased in dystrophic skeletal muscle of human DMD patients and mdx mice. Blockade of IGF2R by neutralizing antibodies stimulated muscle regeneration, induced force recovery and normalized capillary architecture in dystrophic mdx mice representing an encouraging starting point for the development of new biological therapies for DMD

    Exploring the role of MKK7 in excitotoxicity and cerebral ischemia: a novel pharmacological strategy against brain injury

    Full text link
    Excitotoxicity following cerebral ischemia elicits a molecular cascade, which leads to neuronal death. c-Jun-N-terminal kinase (JNK) has a key role in excitotoxic cell death. We have previously shown that JNK inhibition by a specific cell-permeable peptide significantly reduces infarct size and neuronal death in an in vivo model of cerebral ischemia. However, systemic inhibition of JNK may have detrimental side effects, owing to blockade of its physiological function. Here we designed a new inhibitor peptide (growth arrest and DNA damage-inducible 45β (GADD45β-I)) targeting mitogen-activated protein kinase kinase 7 (MKK7), an upstream activator of JNK, which exclusively mediates JNK\u27s pathological activation. GADD45β-I was engineered by optimizing the domain of the GADD45β, able to bind to MKK7, and by linking it to the TAT peptide sequence, to allow penetration of biological membranes. Our data clearly indicate that GADD45β-I significantly reduces neuronal death in excitotoxicity induced by either N-methyl-D-aspartate exposure or by oxygen–glucose deprivation in vitro. Moreover, GADD45β-I exerted neuroprotection in vivo in two models of ischemia, obtained by electrocoagulation and by thromboembolic occlusion of the middle cerebral artery (MCAo). Indeed, GADD45β-I reduced the infarct size when injected 30 min before the lesion in both models. The peptide was also effective when administrated 6 h after lesion, as demonstrated in the electrocoagulation model. The neuroprotective effect of GADD45β-I is long lasting; in fact, 1 week after MCAo the infarct volume was still reduced by 49%. Targeting MKK7 could represent a new therapeutic strategy for the treatment of ischemia and other pathologies involving MKK7/JNK activation. Moreover, this new inhibitor can be useful to further dissect the physiological and pathological role of the JNK pathway in the brain

    Structural and cellular features in metaphyseal and diaphyseal periosteum of osteoporotic rats

    Get PDF
    Despite the important physiological role of periosteum in the pathogenesis and treatment of osteoporosis, little is known about the structural and cellular characteristics of periosteum in osteoporosis. To study the structural and cellular differences in both diaphyseal and metaphyseal periosteum of osteoporotic rats, samples from the right femur of osteoporotic and normal female Lewis rats were collected and tissue sections were stained with hematoxylin and eosin, antibodies or staining kit against tartrate resistant acid phosphatase (TRAP), alkaline phosphatase (ALP), vascular endothelial growth factor (VEGF), von Willebrand (vWF), tyrosine hydroxylase (TH) and calcitonin gene-related peptide (CGRP). The results showed that the osteoporotic rats had much thicker and more cellular cambial layer of metaphyseal periosteum compared with other periosteal areas and normal rats (P < 0.001). The number of TRAP+ osteoclasts in bone resorption pits, VEGF+ cells and the degree of vascularization were found to be greater in the cambial layer of metaphyseal periosteum of osteoporotic rats (P < 0.05), while no significant difference was detected in the number of ALP+ cells between the two groups. Sympathetic nerve fibers identified by TH staining were predominantly located in the cambial layer of metaphyseal periosteum of osteoporotic rats. No obvious difference in the expression of CGRP between the two groups was found. In conclusion, periosteum may play an important role in the cortical bone resorption in osteoporotic rats and this pathological process may be regulated by the sympathetic nervous system

    Social cognition in people with schizophrenia: A cluster-analytic approach

    Get PDF
    Background The study aimed to subtype patients with schizophrenia on the basis of social cognition (SC), and to identify cut-offs that best discriminate among subtypes in 809 out-patients recruited in the context of the Italian Network for Research on Psychoses. Method A two-step cluster analysis of The Awareness of Social Inference Test (TASIT), the Facial Emotion Identification Test and Mayer-Salovey-Caruso Emotional Intelligence Test scores was performed. Classification and regression tree analysis was used to identify the cut-offs of variables that best discriminated among clusters. Results We identified three clusters, characterized by unimpaired (42%), impaired (50.4%) and very impaired (7.5%) SC. Three theory-of-mind domains were more important for the cluster definition as compared with emotion perception and emotional intelligence. Patients more able to understand simple sarcasm (14 for TASIT-SS) were very likely to belong to the unimpaired SC cluster. Compared with patients in the impaired SC cluster, those in the very impaired SC cluster performed significantly worse in lie scenes (TASIT-LI &lt;10), but not in simple sarcasm. Moreover, functioning, neurocognition, disorganization and SC had a linear relationship across the three clusters, while positive symptoms were significantly lower in patients with unimpaired SC as compared with patients with impaired and very impaired SC. On the other hand, negative symptoms were highest in patients with impaired levels of SC. Conclusions If replicated, the identification of such subtypes in clinical practice may help in tailoring rehabilitation efforts to the person's strengths to gain more benefit to the person
    corecore