441 research outputs found

    Relativistic many-body calculations of the Stark-induced amplitude of the 6P1/2 -7P1/2 transition in thallium

    Full text link
    Stark-induced amplitudes for the 6P1/2 - 7P1/2 transition in Tl I are calculated using the relativistic SD approximation in which single and double excitations of Dirac-Hartree-Fock levels are summed to all orders in perturbation theory. Our SD values alpha S = 368 a0 3 and beta S= 298 a 0 3 are in good agreement with the measurements alpha S=377(8) a 0 3$ and beta S = 313(8) a 0 3 by D. DeMille, D. Budker, and E. D. Commins [Phys. Rev. A 50, 4657 (1994)]. Calculations of the Stark shifts in the 6P1/2 - 7P1/2 and 6P1/2 - 7S1/2 transitions are also carried out. The Stark shifts predicted by our calculations agree with the most accurate measured values within the experimental uncertainties for both transitions

    Blackbody radiation shift in 87Rb frequency standard

    Full text link
    The operation of atomic clocks is generally carried out at room temperature, whereas the definition of the second refers to the clock transition in an atom at absolute zero. This implies that the clock transition frequency should be corrected in practice for the effect of finite temperature of which the leading contributor is the blackbody radiation (BBR) shift. Experimental measurements of the BBR shifts are difficult. In this work, we have calculated the blackbody radiation shift of the ground-state hyperfine microwave transition in 87Rb using the relativistic all-order method and carried out detailed evaluation of the accuracy of our final value. Particular care is taken to accurately account for the contributions from highly-excited states. Our predicted value for the Stark coefficient, k_S=-1.240(4)\times 10^{-10}\text{Hz/(V/m)}^{2} is three times more accurate than the previous calculation [1].Comment: 7 page

    Breit Interaction and Parity Non-conservation in Many-Electron Atoms

    Full text link
    We present accurate {\em ab initio} non-perturbative calculations of the Breit correction to the parity non-conserving (PNC) amplitudes of the 6s7s6s-7s and 6s5d3/26s-5d_{3/2} transitions in Cs, 7s8s7s-8s and 7s6d3/27s-6d_{3/2} transitions in Fr, 6s5d3/26s-5d_{3/2} transition in Ba+^+, 7s6d3/27s-6d_{3/2} transition in Ra+^+, and 6p1/26p3/26p_{1/2} - 6p_{3/2} transition in Tl. The results for the 6s7s6s-7s transition in Cs and 7s8s7s-8s transition in Fr are in good agreement with other calculations while calculations for other atoms/transitions are presented for the first time. We demonstrate that higher-orders many-body corrections to the Breit interaction are especially important for the sds-d PNC amplitudes. We confirm good agreement of the PNC measurements for cesium and thallium with the standard model .Comment: 9 pages, 1 figur

    Magic wavelengths for the 5s18s5s-18s transition in rubidium

    Get PDF
    Magic wavelengths, for which there is no differential ac Stark shift for the ground and excited state of the atom, allow trapping of excited Rydberg atoms without broadening the optical transition. This is an important tool for implementing quantum gates and other quantum information protocols with Rydberg atoms, and reliable theoretical methods to find such magic wavelengths are thus extremely useful. We use a high-precision all-order method to calculate magic wavelengths for the 5s18s5s-18s transition of rubidium, and compare the calculation to experiment by measuring the light shift for atoms held in an optical dipole trap at a range of wavelengths near a calculated magic value

    Resolving all-order method convergence problems for atomic physics applications

    Full text link
    The development of the relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Hartree-Fock wave function are included to all orders of perturbation theory led to many important results for study of fundamental symmetries, development of atomic clocks, ultracold atom physics, and others, as well as provided recommended values of many atomic properties critically evaluated for their accuracy for large number of monovalent systems. This approach requires iterative solutions of the linearized coupled-cluster equations leading to convergence issues in some cases where correlation corrections are particularly large or lead to an oscillating pattern. Moreover, these issues also lead to similar problems in the CI+all-order method for many-particle systems. In this work, we have resolved most of the known convergence problems by applying two different convergence stabilizer methods, reduced linear equation (RLE) and direct inversion of iterative subspace (DIIS). Examples are presented for B, Al, Zn+^+, and Yb+^+. Solving these convergence problems greatly expands the number of atomic species that can be treated with the all-order methods and is anticipated to facilitate many interesting future applications

    Scientometric Characteristic of Theses on Criminal Law Defended At the Universities of the Russian Empire (1815-1917)

    Get PDF
    There are analyzed the works of scientists who defended their criminal law theses at the universities of the Russian Empire. The chronological scopes of the research are limited by the date of defense of the first and the last theses on criminal law which are known to the authors. The territorial scope of this article covers the limits of the Russian Empir

    Correlation potential and ladder diagrams

    Full text link
    The all-order correlation potential method of accurate atomic structure calculations for atoms with one external electron is extended to include one more class of correlation diagrams to all orders. These are the so-called ladder diagrams which describe residual Coulomb interaction between an external electron and atomic core. This is in addition to the screening of Coulomb interaction by core electrons and the hole-particle interaction in the core polarization operator which are also included in all orders. Calculations of the energies of the lowest ss, pp and dd states of cesium and thallium show that inclusion of the ladder diagrams leads to significant improvement of the accuracy of the calculations. The discrepancy between theoretical and experimental energies is reduced to a small fraction of a per cent in all cases. This widens the range of atoms and atomic states for which the correlation potential method can produce very accurate results.Comment: 8 pages, 8 figure

    Level-crossing spectroscopy of the 7, 9, and 10D_5/2 states of 133Cs and validation of relativistic many-body calculations of the polarizabilities and hyperfine constants

    Get PDF
    We present an experimental and theoretical investigation of the polarizabilities and hyperfine constants of D_J states in 133Cs for J=3/2 and J=5/2. New experimental values for the hyperfine constant A are obtained from level-crossing signals of the (7,9,10)D_5/2 states of 133Cs and precise calculations of the tensor polarizabilities alpha_2. The results of relativistic many-body calculations for scalar and tensor polarizabilities of the (5-10)D_3/2 and (5-10)D_5/2 states are presented and compared with measured values from the literature. Calculated values of the hyperfine constants A for these states are also presented and checked for consistency with experimental values.Comment: 12 pages, revtex4, 11 figure file
    corecore