1,102 research outputs found

    Dirac fermions on a disclinated flexible surface

    Full text link
    A self-consisting gauge-theory approach to describe Dirac fermions on flexible surfaces with a disclination is formulated. The elastic surfaces are considered as embeddings into R^3 and a disclination is incorporated through a topologically nontrivial gauge field of the local SO(3) group which generates the metric with conical singularity. A smoothing of the conical singularity on flexible surfaces is naturally accounted for by regarding the upper half of two-sheet hyperboloid as an elasticity-induced embedding. The availability of the zero-mode solution to the Dirac equation is analyzed.Comment: 6 page

    Low-temperature thermal conductivity in polycrystalline graphene

    Full text link
    The low-temperature thermal conductivity in polycrystalline graphene is theoretically studied. The contributions from three branches of acoustic phonons are calculated by taking into account scattering on sample borders, point defects and grain boundaries. Phonon scattering due to sample borders and grain boundaries is shown to result in a TαT^{\alpha}-behaviour in the thermal conductivity where α\alpha varies between 1 and 2. This behaviour is found to be more pronounced for nanosized grain boundaries. PACS: 65.80.Ck, 81.05.ue, 73.43.C

    Self-Stimulated Undulator Radiation and its Possible Applications

    Get PDF
    We investigated the phenomena of self-stimulation of incoherent emission from an undulator installed in the linear accelerator or quasi-isochronous storage ring. We discuss possible applications of these phenomena for the beam physics also.Comment: 14 pages, 4 figure
    corecore