2,004 research outputs found

    The Effective Potential And Additional Large Radius Compactified Space-Time Dimensions

    Get PDF
    The consequences of large radius extra space-time compactified dimensions on the four dimensional one loop effective potential are investigated for a model which includes scalar self interactions and Yukawa coupling to fermions. The Kaluza-Klein tower of states associated with the extra compact dimensions shifts the location of the effective potential minimum and modifies its curvature. The dependence of these effects on the radius of the extra dimension is illustrated for various choices of coupling constants and masses. For large radii, the consequence of twisting the fermion boundary condition on the compactified dimensions is numerically found to produce but a negligible effect on the effective potential.Comment: 14 pages, LaTeX, 6 Postscript figure

    Mediation of supersymmetry breaking in extra dimensions

    Full text link
    We review the mechanisms of supersymmetry breaking mediation that occur in sequestered models, where the visible and the hidden sectors are separated by an extra dimension and communicate only via gravitational interactions. By locality, soft breaking terms are forbidden at the classical level and reliably computable within an effective field theory approach at the quantum level. We present a self-contained discussion of these radiative gravitational effects and the resulting pattern of soft masses, and give an overview of realistic model building based on this set-up. We consider both flat and warped extra dimensions, as well as the possibility that there be localized kinetic terms for the gravitational fields.Comment: LaTex, 15 pages; brief review prepared for MPLA. v2: minor correction

    Characterisation of the secondary-neutron production in particle therapy treatments with the MONDO tracking detector

    Get PDF
    Particle Therapy (PT) is a non-invasive technique that exploits charged light ions for the irradiation of tumours that cannot be effectively treated with surgery or conventional radiotherapy. While the largest dose fraction is released to the tumour volume by the primary beam, a non-negligible amount of additional dose is due to the beam fragmentation that occurs along the path towards the target volume. In particular, the produced neutrons are particularly dangerous as they can release their energy far away from the treated area, increasing the risk of developing a radiogenic secondary malignant neoplasm after undergoing a treatment. A precise measurement of the neutron flux, energy spectrum and angular distributions is eagerly needed in order to improve the treatment planning system software, so as to predict the normal tissue toxicity in the target region and the risk of late complications in the whole body. The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project is dedicated to the characterisation of the secondary ultra-fast neutrons ([20-400] MeV energy range) produced in PT. The neutron tracking system exploits the reconstruction of the recoil protons produced in two consecutive (n, p) elastic scattering interactions to measure simultaneously the neutron incoming direction and energy. The tracker active media is a matrix of thin squared scintillating fibers arranged in orthogonally oriented layers that are read out by a sensor (SBAM) based on SPAD (Single-Photon Avalanche Diode) detectors developed in collaboration with the Fondazione Bruno Kessler (FBK)

    Collider Tests of Compact Space Dimensions Using Weak Gauge Bosons

    Get PDF
    We present collider tests of the recent proposal for weak-scale quantum gravity due to new large compact space dimensions in which only the graviton (\G) propagates. We show that the existing high precision LEP-I ZZ-pole data can impose non-trivial constraints on the scale of the new dimensions, via the decay mode Z\to f\bar{f}+\G (f=q,ℓf=q,\ell). These bounds are comparable to those obtained at high energy colliders and provide the first sensitive probe of the scalar graviton. We also study W(Z)+\G production and the anomalous WW(ZZ)WW(ZZ) signal from virtual \G-states at the Fermilab Tevatron, and compare them with the LEP-I bound and those from LEP-II and future linear colliders.Comment: 4 pages, 1 postscript figure include

    Occupation and three-year incidence of respiratory symptoms and lung function decline: the ARIC Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Specific occupations are associated with adverse respiratory health. Inhalation exposures encountered in these jobs may place workers at risk of new-onset respiratory disease.</p> <p>Methods</p> <p>We analyzed data from 8,967 participants from the Atherosclerosis Risk in Communities (ARIC) study, a longitudinal cohort study. Participants included in this analysis were free of chronic cough and phlegm, wheezing, asthma, chronic bronchitis, emphysema, and other chronic lung conditions at the baseline examination, when they were aged 45-64 years. Using data collected in the baseline and first follow-up examination, we evaluated associations between occupation and the three-year incidence of cough, phlegm, wheezing, and airway obstruction and changes in forced expiratory volume in one second (FEV<sub>1</sub>) and forced vital capacity (FVC) measured by spirometry. All associations were adjusted for age, cigarettes per day, race, smoking status, and study center.</p> <p>Results</p> <p>During the approximately three-year follow-up, the percentage of participants developing chronic cough was 3%; chronic phlegm, 3%; wheezing, 3%; and airway obstruction, defined as FEV<sub>1 </sub>< lower limit of normal (LLN) and FEV<sub>1</sub>/FVC < LLN, 2%. The average annual declines in FEV<sub>1 </sub>and FVC were 56 mL and 66 mL, respectively, among men and 40 mL and 52 mL, respectively, among women. Relative to a referent category of managerial and administrative support occupations, elevated risks of new-onset chronic cough and chronic phlegm were observed for mechanics and repairers (chronic cough: RR: 1.81, 95% CI: 1.02, 3.21; chronic phlegm: RR: 2.10, 95% CI: 1.23, 3.57) and cleaning and building service workers (chronic cough: RR: 1.85, 95% CI: 1.01, 3.37; chronic phlegm: RR: 2.28, 95% CI: 1.27, 4.08). Despite the elevated risk of new-onset symptoms, employment in cleaning and building services was associated with attenuated lung function decline, particularly among men, who averaged annual declines in FEV<sub>1 </sub>and FVC of 14 mL and 23 mL, respectively, less than the declines observed in the referent population.</p> <p>Conclusions</p> <p>Employment in mechanic and repair jobs and cleaning and building service occupations are associated with increased incidence of respiratory symptoms. Specific occupations affect the respiratory health of adults without pre-existing respiratory health symptoms and conditions, though long-term health consequences of inhalation exposures in these jobs remain largely unexplored.</p

    Photons, neutrinos and large compact space dimensions

    Get PDF
    We compute the contribution of Kaluza-Klein graviton exchange to the cross section for photon-neutrino scattering. Unlike the usual situation where the virtual graviton exchange represents a small correction to a leading order electroweak or strong amplitude, in this case the graviton contribution is of the same order as the electroweak amplitude, or somewhat larger. Inclusion of the graviton contribution is not sufficient to allow high energy neutrinos to scatter from relic neutrinos in processes such as ÎœÎœË‰â†’ÎłÎł\nu\bar{\nu}\to\gamma\gamma, but the photon-neutrino decoupling temperature is substantially reduced.Comment: 8 pages, 3 figures LaTeX. Typos correcte

    In-room test results at CNAO of an innovative PT treatments online monitor (Dose Profiler)

    Get PDF
    The use of C, He and O ions as projectiles in Particle Therapy (PT) treatments is getting more and more widespread as a consequence of their enhanced relative biological effectiveness and oxygen enhancement ratio, when compared to the protons one. The advantages related to the incoming radiation improved efficacy are requiring an accurate online monitor of the dose release spatial distribution. Such monitor is necessary to prevent unwanted damage to the tissues surrounding the tumour that can arise, for example, due to morphological changes occurred in the patient during the treatment with respect to the initial CT scan. PT treatments with ions can be monitored by detecting the secondary radiation produced by the primary beam interactions with the patient body along the path towards the target volume. Charged fragments produced in the nuclear process of projectile fragmentation can be emitted at large angles with respect to the incoming beam direction and can be detected with high efficiency in a nearly background-free environment. The Dose Profiler (DP) detector, developed within the INSIDE project, is a scintillating fibre tracker that allows an online reconstruction and backtracking of such secondary charged fragments. The construction and preliminary in-room tests performed on the DP, carried out using the 12C ions beam of the CNAO treatment centre using an anthropomorphic phantom as a target, will be reviewed in this contribution. The impact of the secondary fragments interactions with the patient body will be discussed in view of a clinical application. Furthermore, the results implications for a pre-clinical trial on CNAO patients, foreseen in 2019, will be discussed

    Supersymmetric Brane World Scenarios from Off-Shell Supergravity

    Full text link
    Using N=2 off-shell supergravity in five dimensions, we supersymmetrize the brane world scenario of Randall and Sundrum. We extend their construction to include supersymmetric matter at the fixpoints.Comment: 15 pages, no figures, late
    • 

    corecore