7 research outputs found

    Deep Impact Mission to Tempel 1 Favours New Explosive Cosmogony of Comets

    Get PDF
    The assumption that short-period (SP) comets are fragments of massive icy envelopes of Ganymede-like bodies saturated by products of ice electrolysis that underwent global explosions provides a plausible explanation of all known manifestations of comets, including the jet character of outflows, the presence of ions in the vicinity of the nucleus, the bursts and splitting of cometary nuclei, etc., with solar radiation initiating burning of the products of electrolysis in the nucleus. As shown persuasively by numerical simulation carried out in hydrodynamic approximation, the shock wave initiated by the Deep Impact (DI) impactor in the cometary ice saturated originally by the electrolysis products 2H2 + O2 is capable of activating under certain conditions exothermal reactions (of the type O2 + H2 + organics = H2O + CO + HCN + other products of incomplete burning of organics including its light and heavy pyrolyzed compounds, soot, etc.), which will slow down shock wave damping (forced detonation) and increase many times the energy release. As a result, the measured energetics of ejections and outflows from the crater have to exceed the DI energetics. Analysis of different clusters of the DI experiment data confirms these conclusions and expectations and thus it favours the planetary origin of comets.Comment: 21 pages incluging 3 figure
    corecore