3,351 research outputs found

    Surface Electronic Structures and Field Emission Currents at Sodium Overlayers on Low-Index Tungsten Surfaces

    Full text link
    The total energy distributions (TEDs) of the emission currents in field emission and surface photofield emission and the overlayer-induced modifications in the surface electronic structures from the technologically important W surfaces with the commensurate W(100)/Na c(2x2), W(110)/Na (2x2) and W(111)/Na (1x1) overlayers are calculated. The TEDs obtained by our recent numerical method that extends the full-potential linear augmented plane wave method for the electronic structures to the study of field and photofield emission are used to interpret the shifts of the peaks in the experimental TEDs in field emission and photofield emission from the W(100) and W(110) surfaces at sub-monolayer and monolayer Na coverage. Hybridization of the 3s Na states with the pairs of dz2-like surface states of the strong Swanson hump in clean W(100) and surface resonances in clean W(111) below the Fermi energy shifts these W states by about -1.2 eV and -1.0 eV, thus stabilizing these states, to yield new strong peaks in the TEDs in field emission and photofield emission from W(100)/Na c(2x2) and W(111)/Na (1x1) respectively. The effect of Na intralayer interactions are discussed and are shown to shift the strong s- and p-like peaks in the surface density of states of W(110) below and above the Fermi energy respectively to lower energy with increased Na coverage, in agreement with experiments.Comment: 12 page

    The four-fermion interaction in D=2,3,4: a nonperturbative treatment

    Full text link
    A new nonperturbative approach is used to investigate the Gross-Neveu model of four fermion interaction in the space-time dimensions 2, 3 and 4, the number NN of inner degrees of freedom being a fixed integer. The spontaneous symmetry breaking is shown to exist in D=2,3D=2,3 and the running coupling constant is calculated. The four dimensional theory seems to be trivial.Comment: a minor correction: one more acknowledgement is added. Latex 2.09 file, 15 pages, no figures, accepted for publication to Int.J.Mod.Phys.

    Cooper pairing and finite-size effects in a NJL-type four-fermion model

    Full text link
    Starting from a NJL-type model with N fermion species fermion and difermion condensates and their associated phase structures are considered at nonzero chemical potential μ\mu and zero temperature in spaces with nontrivial topology of the form S1S1S1S^1\otimes S^1\otimes S^1 and R2S1R^2\otimes S^1. Special attention is devoted to the generation of the superconducting phase. In particular, for the cases of antiperiodic and periodic boundary conditions we have found that the critical curve of the phase transitions between the chiral symmetry breaking and superconducting phases as well as the corresponding condensates and particle densities strongly oscillate vs λ1/L\lambda\sim 1/L, where LL is the length of the circumference S1S^1. Moreover, it is shown that at some finite values of LL the superconducting phase transition is shifted to smaller values both of μ\mu and particle density in comparison with the case of L=L=\infty.Comment: 13 pages, 13 figures; minor changes; new references added; version accepted to PR

    Exotic solutions in string theory

    Get PDF
    Solutions of classical string theory, correspondent to the world sheets, mapped in Minkowsky space with a fold, are considered. Typical processes for them are creation of strings from vacuum, their recombination and annihilation. These solutions violate positiveness of square of mass and Regge condition. In quantum string theory these solutions correspond to physical states |DDF>+|sp> with non-zero spurious component.Comment: accepted in Il Nuovo Cimento A for publication in 199

    Inventory management in logistics by the example of the OJSC "Kommunarka"

    Get PDF
    Today for most companies questions about effective inventory management are becoming increasingly actual and important because the annual costs of maintaining stocks make up 20 to 50% of the purchase value of the goods. In this way the main purpose of inventory management is to increase the turnover of stocks together with maximum satisfaction and customer needs. This article focuses on optimizing inventory at the OJSC "Kommunarka". The following aspects will be addressed in this article: – Inventory management on the OJSC "Kommunarka" (Republic of Belarus) and Confectionery Association "Beloved Land" (Russian Federation); – Recommendations for improving inventory management system for the OJSC "Kommunarka" based on the experience of inventory management by the CA "Beloved Land"

    A new look at the modified Coulomb potential in a strong magnetic field

    Full text link
    The static Coulomb potential of Quantum Electrodynamics (QED) is calculated in the presence of a strong magnetic field in the lowest Landau level (LLL) approximation using two different methods. First, the vacuum expectation value of the corresponding Wilson loop is calculated perturbatively in two different regimes of dynamical mass mdyn.m_{dyn.}, {\it i.e.}, q2mdyn.2eB|{\mathbf{q}}_{\|}^{2}|\ll m_{dyn.}^{2}\ll |eB| and mdyn.2q2eBm_{dyn.}^{2}\ll |\mathbf{q}_{\|}^{2}|\ll|eB|, where q\mathbf{q}_{\|} is the longitudinal components of the momentum relative to the external magnetic field BB. The result is then compared with the static potential arising from Born approximation. Both results coincide. Although the arising potentials show different behavior in the aforementioned regimes, a novel dependence on the angle θ\theta between the particle-antiparticle's axis and the direction of the magnetic field is observed. In the regime q2mdyn.2eB|{\mathbf{q}}_{\|}^{2}|\ll m_{dyn.}^{2}\ll |eB|, for strong enough magnetic field and depending on the angle θ\theta, a qualitative change occurs in the Coulomb-like potential; Whereas for θ=0,π\theta=0,\pi the potential is repulsive, it exhibits a minimum for angles θ]0,π[\theta\in]0,\pi[.Comment: V1: 26 pages, 8 figures, latex format, V2: Accepted for publication in PRD (2007

    Inventory management in logistics by the example of the OJSC "Kommunarka"

    Get PDF
    Today for most companies questions about effective inventory management are becoming increasingly actual and important because the annual costs of maintaining stocks make up 20 to 50% of the purchase value of the goods. In this way the main purpose of inventory management is to increase the turnover of stocks together with maximum satisfaction and customer needs. This article focuses on optimizing inventory at the OJSC "Kommunarka". The following aspects will be addressed in this article: – Inventory management on the OJSC "Kommunarka" (Republic of Belarus) and Confectionery Association "Beloved Land" (Russian Federation); – Recommendations for improving inventory management system for the OJSC "Kommunarka" based on the experience of inventory management by the CA "Beloved Land"

    Chiral density waves in quark matter within the Nambu--Jona-Lasinio model in an external magnetic field

    Full text link
    A possibility of formation of static dual scalar and pseudoscalar density wave condensates in dense quark matter is considered for the Nambu--Jona-Lasinio model in an external magnetic field. Within a mean-field approximation, the effective potential of the theory is obtained and its minima are numerically studied; a phase diagram of the system is constructed. It is shown that the presence of a magnetic field favors the formation of spatially inhomogeneous condensate configurations at low temperatures and arbitrary non-zero values of the chemical potential.Comment: 13 pages, 4 figure

    Finite Density Effect in the Gross-Neveu Model in a Weakly Curved R1×S2R^1\times S^2 Spacetime

    Full text link
    The three-dimensional Gross-Neveu model in R1×S2R^{1} \times S^{2} spacetime is considered at finite particles number density. We evaluate an effective potential of the composite scalar field σ(x)\sigma(x), which is expressed in terms of a scalar curvature RR and nonzero chemical potential μ\mu. We then derive the critical values of (R,μ)(R,\mu) at which the system undergoes the first order phase transition from the phase with broken chiral invariance to the symmetric phase.Comment: RevTeX, minor changes, new references are adde
    corecore