2,511 research outputs found

    Nonlinear Acoustics at GHz Frequencies in a Viscoelastic Fragile Glass Former

    Get PDF
    Using a picosecond pump-probe ultrasonic technique, we study the propagation of high-amplitude, laser-generated longitudinal coherent acoustic pulses in the viscoelastic fragile glass former DC704. We observe an increase of almost ten percent in acoustic pulse propagation speed of its leading shock front at the highest optical pump fluence which is a result of the supersonic nature of nonlinear propagation in the viscous medium. From our measurement we deduce the nonlinear acoustic parameter of the glass former in the GHz frequency range across the glass transition temperature.Comment: 5 pages, 3 figure

    Giant microwave-induced BB-periodic magnetoresistance oscillations in a two-dimensional electron gas with a bridged-gate tunnel point contact

    Full text link
    We have studied the magnetoresistance of the quantum point contact fabricated on the high mobility two-dimensional electron gas (2DEG) exposed to microwave irradiation. The resistance reveals giant BB-periodic oscillations with the relative amplitude ΔR/R\Delta R/R of up to 700700\% resulting from the propagation and interference of the edge magnetoplasmons (EMPs) in the sample. This giant photoconductance is attributed to the considerably large local electron density modulation in the vicinity of the point contact. We have also analyzed the oscillation periods ΔB\Delta B of the resistance oscillations and, comparing the data with the EMP theory, extracted the EMP interference length LL. We have found that the length LL substantially exceeds the distance between the contact leads but rather corresponds to the distance between metallic contact pads measured along the edge of the 2DEG. This resolves existing controversy in the literature and should help to properly design highly sensitive microwave and terahertz spectrometers based on the discussed effect.Comment: 5 pages, 5 figure

    Nonlinear transport and oscillating magnetoresistance in double quantum wells

    Full text link
    We study the evolution of low-temperature magnetoresistance in double quantum wells in the region below 1 Tesla as the applied current density increases. A flip of the magneto-intersubband oscillation peaks, which occurs as a result of the current-induced inversion of the quantum component of resistivity, is observed. We also see splitting of these peaks as another manifestation of nonlinear behavior, specific for the two-subband electron systems. The experimental results are quantitatively explained by the theory based on the kinetic equation for the isotropic non-equilibrium part of electron distribution function. The inelastic scattering time is determined from the dependence of the inversion magnetic field on the current.Comment: 20 pages, 10 figure
    • …
    corecore