27 research outputs found

    Characterizing Multiple Solutions to the Time - Energy Canonical Commutation Relation via Internal Symmetries

    Full text link
    Internal symmetries can be used to classify multiple solutions to the time energy canonical commutation relation (TE-CCR). The dynamical behavior of solutions to the TE-CCR posessing particular internal symmetries involving time reversal differ significantly from solutions to the TE-CCR without those particular symmetries, implying a connection between the internal symmetries of a quantum system, its internal unitary dynamics, and the TE-CCR.Comment: Accepted for publication in Physical Review A, 10 page

    Confined Quantum Time of Arrivals

    Full text link
    We show that formulating the quantum time of arrival problem in a segment of the real line suggests rephrasing the quantum time of arrival problem to finding states that evolve to unitarily collapse at a given point at a definite time. For the spatially confined particle, we show that the problem admits a solution in the form of an eigenvalue problem of a compact and self-adjoint time of arrival operator derived by a quantization of the classical time of arrival, which is canonically conjugate with the Hamiltonian in closed subspace of the Hilbert space.Comment: Figures are now include

    Confined Quantum Time of Arrival for Vanishing Potential

    Full text link
    We give full account of our recent report in [E.A. Galapon, R. Caballar, R. Bahague {\it Phys. Rev. Let.} {\bf 93} 180406 (2004)] where it is shown that formulating the free quantum time of arrival problem in a segment of the real line suggests rephrasing the quantum time of arrival problem to finding a complete set of states that evolve to unitarily arrive at a given point at a definite time. For a spatially confined particle, here it is shown explicitly that the problem admits a solution in the form of an eigenvalue problem of a class of compact and self-adjoint time of arrival operators derived by a quantization of the classical time of arrival. The eigenfunctions of these operators are numerically demonstrated to unitarilly arrive at the origin at their respective eigenvalues.Comment: accepted for publication in Phys. Rev.

    Transition from discrete to continuous time of arrival distribution for a quantum particle

    Full text link
    We show that the Kijowski distribution for time of arrivals in the entire real line is the limiting distribution of the time of arrival distribution in a confining box as its length increases to infinity. The dynamics of the confined time of arrival eigenfunctions is also numerically investigated and demonstrated that the eigenfunctions evolve to have point supports at the arrival point at their respective eigenvalues in the limit of arbitrarilly large confining lengths, giving insight into the ideal physical content of the Kijowsky distribution.Comment: Accepted for publication in Phys. Rev.

    Reply to Comment by Galapon on 'Almost-periodic time observables for bound quantum systems'

    Full text link
    In a recent paper [1] (also at http://lanl.arxiv.org/abs/0803.3721), I made several critical remarks on a 'Hermitian time operator' proposed by Galapon [2] (also at http://lanl.arxiv.org/abs/quant-ph/0111061). Galapon has correctly pointed out that remarks pertaining to 'denseness' of the commutator domain are wrong [3]. However, the other remarks still apply, and it is further noted that a given quantum system can be a member of this domain only at a set of times of total measure zero.Comment: 3 page

    Pauli's Theorem and Quantum Canonical Pairs: The Consistency Of a Bounded, Self-Adjoint Time Operator Canonically Conjugate to a Hamiltonian with Non-empty Point Spectrum

    Full text link
    In single Hilbert space, Pauli's well-known theorem implies that the existence of a self-adjoint time operator canonically conjugate to a given Hamiltonian signifies that the time operator and the Hamiltonian possess completely continuous spectra spanning the entire real line. Thus the conclusion that there exists no self-adjoint time operator conjugate to a semibounded or discrete Hamiltonian despite some well-known illustrative counterexamples. In this paper we evaluate Pauli's theorem against the single Hilbert space formulation of quantum mechanics, and consequently show the consistency of assuming a bounded, self-adjoint time operator canonically conjugate to a Hamiltonian with an unbounded, or semibounded, or finite point spectrum. We point out Pauli's implicit assumptions and show that they are not consistent in a single Hilbert space. We demonstrate our analysis by giving two explicit examples. Moreover, we clarify issues sorrounding the different solutions to the canonical commutation relations, and, consequently, expand the class of acceptable canonical pairs beyond the solutions required by Pauli's theorem.Comment: contains corrections to minor typographical errors of the published versio

    Sources of quantum waves

    Get PDF
    Due to the space and time dependence of the wave function in the time dependent Schroedinger equation, different boundary conditions are possible. The equation is usually solved as an ``initial value problem'', by fixing the value of the wave function in all space at a given instant. We compare this standard approach to "source boundary conditions'' that fix the wave at all times in a given region, in particular at a point in one dimension. In contrast to the well-known physical interpretation of the initial-value-problem approach, the interpretation of the source approach has remained unclear, since it introduces negative energy components, even for ``free motion'', and a time-dependent norm. This work provides physical meaning to the source method by finding the link with equivalent initial value problems.Comment: 12 pages, 7 inlined figures; typos correcte

    Time asymmetries in quantum cosmology and the searching for boundary conditions to the Wheeler-DeWitt equation

    Get PDF
    The paper addresses the quantization of minisuperspace cosmological models by studying a possible solution to the problem of time and time asymmetries in quantum cosmology. Since General Relativity does not have a privileged time variable of the newtonian type, it is necessary, in order to have a dynamical evolution, to select a physical clock. This choice yields, in the proposed approach, to the breaking of the so called clock-reversal invariance of the theory which is clearly distinguished from the well known motion-reversal invariance of both classical and quantum mechanics. In the light of this new perspective, the problem of imposing proper boundary conditions on the space of solutions of the Wheeler-DeWitt equation is reformulated. The symmetry-breaking formalism of previous papers is analyzed and a clarification of it is proposed in order to satisfy the requirements of the new interpretation.Comment: 25 pages, 1 figur

    Quantum-Classical Correspondence of Dynamical Observables, Quantization and the Time of Arrival Correspondence Problem

    Full text link
    We raise the problem of constructing quantum observables that have classical counterparts without quantization. Specifically we seek to define and motivate a solution to the quantum-classical correspondence problem independent from quantization and discuss the general insufficiency of prescriptive quantization, particularly the Weyl quantization. We demonstrate our points by constructing time of arrival operators without quantization and from these recover their classical counterparts

    Time in Quantum Mechanics and Quantum Field Theory

    Full text link
    W. Pauli pointed out that the existence of a self-adjoint time operator is incompatible with the semibounded character of the Hamiltonian spectrum. As a result, people have been arguing a lot about the time-energy uncertainty relation and other related issues. In this article, we show in details that Pauli's definition of time operator is erroneous in several respects.Comment: 20 page
    corecore