4 research outputs found

    Modification of the ground state in Sm-Sr manganites by oxygen isotope substitution

    Full text link
    The effect of 16^{16}O →\to 18^{18}O isotope substitution on electrical resistivity and magnetic susceptibility of Sm1−x_{1-x}Srx_xMnO3_3 manganites is analyzed. It is shown that the oxygen isotope substitution drastically affects the phase diagram at the crossover region between the ferromagnetic metal state and that of antiferromagnetic insulator (0.4 <x<< x < 0.6), and induces the metal-insulator transition at for xx = 0.475 and 0.5. The nature of antiferromagnetic insulator phase is discussed.Comment: 4 pages, 3 eps figures, RevTeX, submitted to Phys. Rev. Let

    Isotope effect for transport and magnetic properties of La

    No full text
    The effect of 16O→18O^{16}{\rm O}\rightarrow ^{18}{\rm O} isotope substitution on electrical resistivity, magnetoresistance, and ac magnetic susceptibility was studied for La0.35Pr0.35Ca0.3MnO3 epitaxial thin films deposited onto LaAlO3 and SrTiO3 substrates. For the films on LaAlO3, the isotope substitution resulted in the reversible transition from a metal-like to insulating state. The applied magnetic field (H≥2T\rm H \geq 2 T) transformed the sample with 18O back to the metallic state. The films on SrTiO3 remained metallic at low temperatures for both 16O and 18O, but the shift of the resistivity peak corresponding to onset of metallic state exceeded 63 K after 16O→18O\rm ^{16}O\rightarrow ^{18}O substitution. The temperature dependence of both resistivity and magnetic susceptibility was characterized by hysteresis, especially pronounced in the case of the films on LaAlO3. Such a behavior gives certain indications of the phase separation characteristic of interplay between ferromagnetism and charge ordering
    corecore