21,560 research outputs found
Parallel Implementation of the PHOENIX Generalized Stellar Atmosphere Program
We describe the parallel implementation of our generalized stellar atmosphere
and NLTE radiative transfer computer program PHOENIX. We discuss the parallel
algorithms we have developed for radiative transfer, spectral line opacity, and
NLTE opacity and rate calculations. Our implementation uses a MIMD design based
on a relatively small number of MPI library calls. We report the results of
test calculations on a number of different parallel computers and discuss the
results of scalability tests.Comment: To appear in ApJ, 1997, vol 483. LaTeX, 34 pages, 3 Figures, uses
AASTeX macros and styles natbib.sty, and psfig.st
Synthetic Spectra of Hydrodynamic Models of Type Ia Supernovae
We present detailed NLTE synthetic spectra of hydrodynamic SNe Ia models. We
make no assumptions about the form of the spectrum at the inner boundary. We
calculate both Chandrasekhar-mass deflagration models and sub-Chandrasekhar
``helium detonators.'' Gamma-ray deposition is handled in a simple, accurate
manner. We have parameterized the storage of energy that arises from the time
dependent deposition of radioactive decay energy in a reasonable manner, that
spans the expected range. We find that the Chandrasekhar-mass deflagration
model W7 of Nomoto etal shows good agreement with the observed spectra of SN
1992A and SN 1994D, particularly in the UV, where our models are expected to be
most accurate. The sub-Chandrasekhar models do not reproduce the UV deficit
observed in normal SNe Ia. They do bear some resemblance to sub-luminous SNe
Ia, but the shape of the spectra (i.e. the colors) are opposite to that of the
observed ones and the intermediate mass element lines such as Si II, and Ca II
are extremely weak, which seems to be a generic difficulty of the models.
Although the sub-Chandrasekhar models have a significant helium abundance
(unlike Chandrasekhar-mass models), helium lines are not prominent in the
spectra near maximum light and thus do not act as a spectral signature for the
progenitor.Comment: submitted to ApJ, 26 pages, 10 figures, uses LaTeX styles aasms4.sty
and natbib.sty Also available at: http://www.nhn.ou.edu/~baron
A 3D radiative transfer framework: VII. Arbitrary velocity fields in the Eulerian frame
A solution of the radiative-transfer problem in 3D with arbitrary velocity
fields in the Eulerian frame is presented. The method is implemented in our 3D
radiative transfer framework and used in the PHOENIX/3D code. It is tested by
comparison to our well- tested 1D co-moving frame radiative transfer code,
where the treatment of a monotonic velocity field is implemented in the
Lagrangian frame. The Eulerian formulation does not need much additional memory
and is useable on state-of-the-art computers, even large-scale applications
with 1000's of wavelength points are feasible
On the Spectrum and Nature of the Peculiar Type Ia Supernova 1991T
A parameterized supernova synthetic-spectrum code is used to study line
identifications in the photospheric-phase spectra of the peculiar Type Ia SN
1991T, and to extract some constraints on the composition structure of the
ejected matter. The inferred composition structure is not like that of any
hydrodynamical model for Type Ia supernovae. Evidence that SN 1991T was
overluminous for an SN Ia is presented, and it is suggested that this peculiar
event probably was a substantially super-Chandrasekhar explosion that resulted
from the merger of two white dwarfs.Comment: 1 text, 7 figures, submitted to MNRA
Detailed Spectral Modeling of a 3-D Pulsating Reverse Detonation Model: Too Much Nickel
We calculate detailed NLTE synthetic spectra of a Pulsating Reverse
Detonation (PRD) model, a novel explosion mechanism for Type Ia supernovae.
While the hydro models are calculated in 3-D, the spectra use an angle averaged
hydro model and thus some of the 3-D details are lost, but the overall average
should be a good representation of the average observed spectra. We study the
model at 3 epochs: maximum light, seven days prior to maximum light, and 5 days
after maximum light. At maximum the defining Si II feature is prominent, but
there is also a prominent C II feature, not usually observed in normal SNe Ia
near maximum. We compare to the early spectrum of SN 2006D which did show a
prominent C II feature, but the fit to the observations is not compelling.
Finally we compare to the post-maximum UV+optical spectrum of SN 1992A. With
the broad spectral coverage it is clear that the iron-peak elements on the
outside of the model push too much flux to the red and thus the particular PRD
realizations studied would be intrinsically far redder than observed SNe Ia. We
briefly discuss variations that could improve future PRD models.Comment: 15 pages, 4 figures, submitted to Ap
Preliminary Spectral Analysis of SN 1994I
We present optical spectra of the Type Ic supernova 1994I in M51 and
preliminary non-LTE analysis of the spectra. Our models are not inconsistent
with the explosions of C+O cores of massive stars. While we find no direct
evidence for helium in the optical spectra, our models cannot rule out small
amounts of helium. More than 0.1~\msol\ of helium seems unlikely.Comment: LaTeX, MN style, psfig, and natbib substyles, 7 pages, 4 figures, to
appear in MNRAS. Postscript file available from
http://www.nhn.uoknor.edu/~baro
Theoretical Clues to the Ultraviolet Diversity of Type Ia Supernovae
The effect of metallicity on the observed light of Type Ia supernovae (SNe
Ia) could lead to systematic errors as the absolute magnitudes of local and
distant SNe Ia are compared to measure luminosity distances and determine
cosmological parameters. The UV light may be especially sensitive to
metallicity, though different modeling methods disagree as to the magnitude,
wavelength dependence, and even the sign of the effect. The outer density
structure, ^56 Ni, and to a lesser degree asphericity, also impact the UV. We
compute synthetic photometry of various metallicity-dependent models and
compare to UV/optical photometry from the Swift Ultra-Violet/Optical Telescope.
We find that the scatter in the mid-UV to near-UV colors is larger than
predicted by changes in metallicity alone and is not consistent with reddening.
We demonstrate that a recently employed method to determine relative abundances
using UV spectra can be done using UVOT photometry, but we warn that accurate
results require an accurate model of the cause of the variations. The abundance
of UV photometry now available should provide constraints on models that
typically rely on UV spectroscopy for constraining metallicity, density, and
other parameters. Nevertheless, UV spectroscopy for a variety of SN explosions
is still needed to guide the creation of accurate models. A better
understanding of the influences affecting the UV is important for using SNe Ia
as cosmological probes, as the UV light may test whether SNe Ia are
significantly affected by evolutionary effects.Comment: 10 pages. Submitted to Ap
- …