141 research outputs found
On stress/strain state in a rotating disk
In the framework of mechanics of continuum bodies, the problem of stress/strain state in a high-speed rotating disk of constant thickness has been considered. The material of the disk is assumed to be homogeneous, elastic/perfectly-plastic. In the plastic zone, the stresses and plastic strains are related by some associated law similar to the one employed in deformation theory of plasticity. The general algorithm of the solution covers any smooth plasticity function. At some steps of the algorithm, it is possible to get analytical expressions, particularly, for the quadratic Mises yield criterion. For the given model, the notion of control parameters (external and internal) has been introduced. The allowable boundaries of external parameters have been defined as well. For some states of the disk, the coherent values of external parameters have been obtained. The results are represented graphically to show various states of the disk. The usage of piecewise plasticity functions has been briefly discussed. The results obtained can be used in preliminary engineering design and related numerical codes.info:eu-repo/semantics/publishedVersio
Coulomb gap in the one-particle density of states in three-dimensional systems with localized electrons
The one-particle density of states (1P-DOS) in a system with localized
electron states vanishes at the Fermi level due to the Coulomb interaction
between electrons. Derivation of the Coulomb gap uses stability criteria of the
ground state. The simplest criterion is based on the excitonic interaction of
an electron and a hole and leads to a quadratic 1P-DOS in the three-dimensional
(3D) case. In 3D, higher stability criteria, including two or more electrons,
were predicted to exponentially deplete the 1P-DOS at energies close enough to
the Fermi level. In this paper we show that there is a range of intermediate
energies where this depletion is strongly compensated by the excitonic
interaction between single-particle excitations, so that the crossover from
quadratic to exponential behavior of the 1P-DOS is retarded. This is one of the
reasons why such exponential depletion was never seen in computer simulations.Comment: 6 pages, 1 figur
Interacting quantum rotors in oxygen-doped germanium
We investigate the interaction effect between oxygen impurities in
crystalline germanium on the basis of a quantum rotor model. The dipolar
interaction of nearby oxygen impurities engenders non-trivial low-lying
excitations, giving rise to anomalous behaviors for oxygen-doped germanium
(Ge:O) below a few degrees Kelvin. In particular, it is theoretically predicted
that Ge:O samples with oxygen-concentration of 10cm show (i)
power-law specific heats below 0.1 K, and (ii) a peculiar hump in dielectric
susceptibilities around 1 K. We present an interpretation for the power-law
specific heats, which is based on the picture of local double-well potentials
randomly distributed in Ge:O samples.Comment: 13 pages, 11 figures; to be published in Phys. Rev.
Density of States and Conductivity of Granular Metal or Array of Quantum Dots
The conductivity of a granular metal or an array of quantum dots usually has
the temperature dependence associated with variable range hopping within the
soft Coulomb gap of density of states. This is difficult to explain because
neutral dots have a hard charging gap at the Fermi level. We show that
uncontrolled or intentional doping of the insulator around dots by donors leads
to random charging of dots and finite bare density of states at the Fermi
level. Then Coulomb interactions between electrons of distant dots results in
the a soft Coulomb gap. We show that in a sparse array of dots the bare density
of states oscillates as a function of concentration of donors and causes
periodic changes in the temperature dependence of conductivity. In a dense
array of dots the bare density of states is totally smeared if there are
several donors per dot in the insulator.Comment: 13 pages, 15 figures. Some misprints are fixed. Some figures are
dropped. Some small changes are given to improve the organizatio
Coulomb gap in a model with finite charge transfer energy
The Coulomb gap in a donor-acceptor model with finite charge transfer energy
describing the electronic system on the dielectric side of the
metal-insulator transition is investigated by means of computer simulations on
two- and three-dimensional finite samples with a random distribution of equal
amounts of donor and acceptor sites. Rigorous relations reflecting the symmetry
of the model presented with respect to the exchange of donors and acceptors are
derived. In the immediate neighborhood of the Fermi energy the the
density of one-electron excitations is determined solely by
finite size effects and further away from is described by
an asymmetric power law with a non-universal exponent, depending on the
parameter .Comment: 10 pages, 6 figures, submitted to Phys. Rev.
Effect of inter-wall surface roughness correlations on optical spectra of quantum well excitons
We show that the correlation between morphological fluctuations of two
interfaces confining a quantum well strongly suppresses a contribution of
interface disorder to inhomogeneous line width of excitons. We also demonstrate
that only taking into account these correlations one can explain all the
variety of experimental data on the dependence of the line width upon thickness
of the quantum well.Comment: 13 pages, 8 figures, Revtex4, submitted to PR
On dispersive energy transport and relaxation in the hopping regime
A new method for investigating relaxation phenomena for charge carriers
hopping between localized tail states has been developed. It allows us to
consider both charge and energy {\it dispersive} transport. The method is based
on the idea of quasi-elasticity: the typical energy loss during a hop is much
less than all other characteristic energies. We have investigated two models
with different density of states energy dependencies with our method. In
general, we have found that the motion of a packet in energy space is affected
by two competing tendencies. First, there is a packet broadening, i.e. the
dispersive energy transport. Second, there is a narrowing of the packet, if the
density of states is depleting with decreasing energy. It is the interplay of
these two tendencies that determines the overall evolution. If the density of
states is constant, only broadening exists. In this case a packet in energy
space evolves into Gaussian one, moving with constant drift velocity and mean
square deviation increasing linearly in time. If the density of states depletes
exponentially with decreasing energy, the motion of the packet tremendously
slows down with time. For large times the mean square deviation of the packet
becomes constant, so that the motion of the packet is ``soliton-like''.Comment: 26 pages, RevTeX, 10 EPS figures, submitted to Phys. Rev.
Transport of magnetoexcitons in single and coupled quantum wells
The transport relaxation time and the mean free path of
magnetoexcitons in single and coupled quantum wells are calculated ( is the
magnetic momentum of the magnetoexciton). We present the results for
magnetoexciton scattering in a random field due to (i) quantum well width
fluctuations, (ii) composite fluctuations and (iii) ionized impurities. The
time depends nonmonotonously on in the case (ii) and in the cases
(i), (iii) for smaller than some critical value ( is the interwell
separation, is the magnetic length). For the
transport relaxation time increases monotonously with . The magnetoexciton
mean free path has a maximum at in the cases (i), (iii).
It decreases with increasing . The mean free path calculated for the case
(ii) may have two maxima. One of them disappears with the variation of the
random fields parameters. The maximum of increases with for
types (i,iii) of scattering processes and decreases in the case (ii).Comment: 13 pages, 8 figures in EPS format; Physica Scripta (in print
Monte-Carlo Simulations of the Dynamical Behavior of the Coulomb Glass
We study the dynamical behavior of disordered many-particle systems with
long-range Coulomb interactions by means of damage-spreading simulations. In
this type of Monte-Carlo simulations one investigates the time evolution of the
damage, i.e. the difference of the occupation numbers of two systems, subjected
to the same thermal noise. We analyze the dependence of the damage on
temperature and disorder strength. For zero disorder the spreading transition
coincides with the equilibrium phase transition, whereas for finite disorder,
we find evidence for a dynamical phase transition well below the transition
temperature of the pure system.Comment: 10 pages RevTeX, 8 Postscript figure
Problems of Development and Application of Metal Matrix Composite Powders for Additive Technologies
The paper considers the problem of structure formation in composites with carbide phase and a metal binder under self-propagating high-temperature synthesis (SHS) of powder mixtures. The relation between metal binder content and their structure and wear resistance of coatings was studied. It has been shown that dispersion of the carbide phase and volume content of metal binder in the composite powders structure could be regulated purposefully for all of studied composites. It was found that the structure of surfaced coating was fully inherited of composite powders. Modification or coarsening of the structure at the expense of recrystallization or coagulation carbide phase during deposition and sputtering does not occur
- …