201 research outputs found

    First Results on Nucleon Resonance Photocouplings from the γp → π+π−p Reaction

    Get PDF
    We report the first experimental measurements of the nine 1-fold differential cross sections for the γ p → π+π−p reaction, obtained with the CLAS detector at Jefferson Laboratory. The measurements cover the invariant mass range of the final state hadrons from 1.6 GeV \u3c W \u3c 2.0 GeV. For the first time the photocouplings of all prominent nucleon resonances in this mass range have been extracted from this exclusive channel. Photoproduction of two charged pions is of particular importance for the evaluation of the photocouplings for the Δ (1620)1/2−, Δ (1700)3/2−, N(1720)3/2+, and Δ (1905)5/2+ resonances, which have dominant decays into the π π N final states rather than the more extensively studied single meson decay channels

    Evidence for the N(1720)3/2+N'(1720)3/2^+ Nucleon Resonance from Combined Studies of CLAS π+πp\pi^+\pi^-p Photo- and Electroproduction Data

    Full text link
    The analysis of the nine 1-fold differential cross sections for the γr,vpπ+πp\gamma_{r,v} p \to \pi^+\pi^-p photo- and electroproduction reactions obtained with the CLAS detector at Jefferson Laboratory was carried out with the goal to establish the contributing resonances in the mass range from 1.6~GeV to 1.8~GeV. In order to describe the photo- and electroproduction data with Q2Q^2-independent resonance masses and hadronic decay widths in the Q2Q^2 range below 1.5~GeV2^2, it was found that an N(1720)3/2+N'(1720)3/2^+ state is required in addition to the already well-established nucleon resonances. This work demonstrates that the combined studies of π+πp\pi^+\pi^-p photo- and electroproduction data are vital for the observation of this resonance. The contributions from the N(1720)3/2+N'(1720)3/2^+ state and the already established N(1720)3/2+N(1720)3/2^+ state with a mass of 1.745~GeV are well separated by their different hadronic decays to the πΔ\pi \Delta and ρp\rho p final states and the different Q2Q^2-evolution of their photo-/electroexcitation amplitudes. The N(1720)3/2+N'(1720)3/2^+ state is the first recently established baryon resonance for which the results on the Q2Q^2-evolution of the photo-/electrocouplings have become available. These results are important for the exploration of the nature of the ``missing'' baryon resonances.Comment: accepted for publication in Phys. Lett.

    Yuri Popov — as we remember him

    Get PDF
    Dr. Yuri Popov, born 5 March 1936, passed away 16 November 2016. Upon graduation from the Entomology Department of Moscow State University, he joined the Arthropoda Lab of the Paleontological Institute, where he studied fossil and living true bugs and their kin and became a major expert in that area. He was a man of many talents and had lots of friends all over the world. The few flashbacks collected here are but a small tribute to his memory

    Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n

    Get PDF
    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π + electroproduction reaction γ ∗ p → n π + . The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is 1.1 < W < 3 GeV and 1 < Q 2 < 6 GeV 2 . Results were obtained for about 6000 bins in W ,   Q 2 ,   cos ( θ ∗ ) , and ϕ ∗ . Except at forward angles, very large target-spin asymmetries are observed over the entire W region. Reasonable agreement is found with phenomenological fits to previous data for W < 1.6 GeV, but very large differences are seen at higher values of W . A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q 2 , for resonances with masses as high as 2.4 GeV

    Comment on the narrow structure reported by Amaryan et al

    Full text link
    The CLAS Collaboration provides a comment on the physics interpretation of the results presented in a paper published by M. Amaryan et al. regarding the possible observation of a narrow structure in the mass spectrum of a photoproduction experiment.Comment: to be published in Physical Review

    Transverse Polarization of Σ+(1189)\Sigma^{+}(1189) in Photoproduction on a Hydrogen Target in CLAS

    Full text link
    Experimental results on the Σ+(1189)\Sigma^+(1189) hyperon transverse polarization in photoproduction on a hydrogen target using the CLAS detector at Jefferson laboratory are presented. The Σ+(1189)\Sigma^+(1189) was reconstructed in the exclusive reaction γ+pKS0+Σ+(1189)\gamma+p\rightarrow K^{0}_{S} + \Sigma^+(1189) via the Σ+pπ0\Sigma^{+} \to p \pi^{0} decay mode. The KS0K^{0}_S was reconstructed in the invariant mass of two oppositely charged pions with the π0\pi^0 identified in the missing mass of the detected pπ+πp\pi^+\pi^- final state. Experimental data were collected in the photon energy range EγE_{\gamma} = 1.0-3.5 GeV (s\sqrt{s} range 1.66-2.73 GeV). We observe a large negative polarization of up to 95%. As the mechanism of transverse polarization of hyperons produced in unpolarized photoproduction experiments is still not well understood, these results will help to distinguish between different theoretical models on hyperon production and provide valuable information for the searches of missing baryon resonances.Comment: pages 1

    Measurement of the neutron F2 structure function via spectator tagging with CLAS

    Full text link
    We report on the first measurement of the F2 structure function of the neutron from semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to < 100 MeV and their angles to < 100 degrees relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F2n data collected cover the nucleon resonance and deep-inelastic regions over a wide range of Bjorken x for 0.65 < Q2 < 4.52 GeV2, with uncertainties from nuclear corrections estimated to be less than a few percent. These measurements provide the first determination of the neutron to proton structure function ratio F2n/F2p at 0.2 < x < 0.8 with little uncertainty due to nuclear effects.Comment: 6 pages, 3 page

    Measurement of the nuclear multiplicity ratio for Ks0K^0_s hadronization at CLAS

    Full text link
    The influence of cold nuclear matter on lepto-production of hadrons in semi-inclusive deep inelastic scattering is measured using the CLAS detector in Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the Ks0K_s^0 multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a function of the fractional virtual photon energy zz transferred to the Ks0K_s^0 and the transverse momentum squared pT2p_{T}^2 of the Ks0K_s^0. We find that the multiplicity ratios for Ks0K^0_s are reduced in the nuclear medium at high zz and low pT2p_{T}^2, with a trend for the Ks0K^0_s transverse momentum to be broadened in the nucleus for large pT2p_{T}^2.Comment: Submitted to Phys. Lett.
    corecore