1 research outputs found

    Enhancement of the Kondo effect through Rashba spin-orbit interactions

    Full text link
    We analyze the physics of a one-orbital Anderson impurity model in a two-dimensional electron gas in the presence of Rashba spin-orbit (RSO) interactions in the Kondo regime. The spin SU(2) symmetry breaking results in an effective two-band electron gas coupled to the impurity. The Kondo regime is obtained by a Schrieffer-Wolff transformation revealing the existence of a parity breaking term with the form of the Dzyaloshinsky-Moriya (DM) interaction. The DM term vanishes at the particle-hole symmetric point of the system, but it has important effects otherwise. Performing a renormalization group (RG) analysis we find that the model describes a two-channel Kondo system with ferro- and anti-ferromagnetic couplings. Furthermore, the DM term renormalizes the antiferromagnetic Kondo coupling producing an exponential enhancement of the Kondo temperature. We suggest that these effects can be observed in semiconducting systems, as well as in graphene and topological insulators.Comment: 4 pages, 1 figure. Final published versio
    corecore