3,829 research outputs found
X-ray induced persistent photoconductivity in Si-doped AlGaAs
We demonstrate that X-ray irradiation can be used to induce an
insulator-metal transition in Si-doped AlGaAs, a
semiconductor with {\it DX} centers. The excitation mechanism of the {\it DX}
centers into their shallow donor state was revealed by studying the
photoconductance along with fluorescence. The photoconductance as a function of
incident X-ray energy exhibits an edge both at the Ga and As K-edge, implying
that core-hole excitation of Ga and As are efficient primary steps for the
excitation of {\it DX} centers. A high quantum yield () suggests that
the excitation is indirect and nonlocal, due to secondary electrons, holes, and
fluorescence photons.Comment: 3 pages of text, 6 figures. An error in Fig.5 was detected, so we
corrected i
Antiferromagnetic Domain Wall Engineering in Chromium Films
We have engineered an antiferromagnetic domain wall by utilizing a magnetic
frustration effect of a thin iron cap layer deposited on a chromium film.
Through lithography and wet etching we selectively remove areas of the Fe cap
layer to form a patterned ferromagnetic mask over the Cr film. Removing the Fe
locally removes magnetic frustration in user-defined regions of the Cr film. We
present x-ray microdiffraction microscopy results confirming the formation of a
90{\deg} spin-density wave propagation domain wall in Cr. This domain wall
nucleates at the boundary defined by our Fe mask.Comment: submitted to AP
Interplay of charge and spin correlations in nickel perovskites
Analyzing the motion of low--spin holes in a high--spin
background, we derive a sort of generalized t--J Hamiltonian for the planes of Sr--doped nickelates. In addition to the rather complex
carrier--spin and spin--spin couplings we take into account the coupling of the
doped holes to in--plane oxygen breathing modes by a Holstein--type interaction
term. Because of strong magnetic confinement effects the holes are nearly
entirely prelocalized and the electron--phonon coupling becomes much more
effective in forming polarons than in the isostructural cuprates. In the light
of recent experiments on we discuss how the variety of
the observed transport and charge/spin--ordering phenomena can be qualitatively
understood in terms of our model Hamiltonian.Comment: 2 pages, LTpaper.sty, Proc. XXI Int. Conf. on Low Temp. Phys. Prague
9
Theory of Unconventional Spin Density Wave: A Possible Mechanism of the Micromagnetism in U-based Heavy Fermion Compounds
We propose a novel spin density wave (SDW) state as a possible mechanism of
the anomalous antiferromagnetism, so-called the micromagnetism, in URu_2Si_2
below 17.5[K]. In this new SDW, the electron-hole pair amplitude changes its
sign in the momentum space as in the case of the unconventional
superconductivity. It is shown that this state can be realized in an extended
Hubbard model within the mean field theory. We also examine some characteristic
properties of this SDW to compare with the experimental results. All these
properties well explain the unsolved problem of the micromagnetism.Comment: REVTeX v3.1, 4 pages, 5 figure
Resonant Inelastic X-Ray Scattering from Valence Excitations in Insulating Copper-Oxides
We report resonant inelastic x-ray measurements of insulating LaCuO
and SrCuOCl taken with the incident energy tuned near the Cu K
absorption edge. We show that the spectra are well described in a shakeup
picture in 3rd order perturbation theory which exhibits both incoming and
outgoing resonances, and demonstrate how to extract a spectral function from
the raw data. We conclude by showing {\bf q}-dependent measurements of the
charge transfer gap.Comment: minor notational changes, discussion of anderson impurity model
fixed, references added; accepted by PR
X-ray Scattering Study of the spin-Peierls transition and soft phonon behavior in TiOCl
We have studied the S=1/2 quasi-one-dimensional antiferromagnet TiOCl using
single crystal x-ray diffraction and inelastic x-ray scattering techniques. The
Ti ions form staggered spin chains which dimerize below Tc1 = 66 K and have an
incommensurate lattice distortion between Tc1 and Tc2 = 92 K. Based on our
measurements of the intensities, wave vectors, and harmonics of the
incommensurate superlattice peaks, we construct a model for the incommensurate
modulation. The results are in good agreement with a soliton lattice model,
though some quantitative discrepancies exist near Tc2. The behavior of the
phonons has been studied using inelastic x-ray scattering with ~2 meV energy
resolution. For the first time, a zone boundary phonon which softens at the
spin-Peierls temperature Tsp has been observed. Our results show reasonably
good quantitative agreement with the Cross-Fisher theory for the phonon
dynamics at wave vectors near the zone boundary and temperatures near Tsp.
However, not all aspects of the data can be described, such as the strong
overdamping of the soft mode above Tsp. Overall, our results show that TiOCl is
a good realization of a spin-Peierls system, where the phonon softening allows
us to identify the transition temperature as Tsp=Tc2=92 KComment: 14 pages, 14 figure
An automatic reagent dispenser for shipboard use
Recent work on modification of the molybdenum-blue method for determination of dissolved inorganic phosphate in sea water (Wooster and Rakestraw, 1951) showed the need for a simple rugged device sui table for rapid and precise delivery of small quantities of reagents at sea. The two reagents used for phosphat e determination impose addit ional requirements on this device. Molybdic acid solution must be protected from the light and must not be allowed to come in contact with rubber;·stannous chloride solution must be protected from contact with the atmosphere
MR diffusion changes in the perimeter of the lateral ventricles demonstrate periventricular injury in post-hemorrhagic hydrocephalus of prematurity
OBJECTIVES: Injury to the preterm lateral ventricular perimeter (LVP), which contains the neural stem cells responsible for brain development, may contribute to the neurological sequelae of intraventricular hemorrhage (IVH) and post-hemorrhagic hydrocephalus of prematurity (PHH). This study utilizes diffusion MRI (dMRI) to characterize the microstructural effects of IVH/PHH on the LVP and segmented frontal-occipital horn perimeters (FOHP).
STUDY DESIGN: Prospective study of 56 full-term infants, 72 very preterm infants without brain injury (VPT), 17 VPT infants with high-grade IVH without hydrocephalus (HG-IVH), and 13 VPT infants with PHH who underwent dMRI at term equivalent. LVP and FOHP dMRI measures and ventricular size-dMRI correlations were assessed.
RESULTS: In the LVP, PHH had consistently lower FA and higher MD and RD than FT and VPT (p\u3c.050). However, while PHH FA was lower, and PHH RD was higher than their respective HG-IVH measures (p\u3c.050), the MD and AD values did not differ. In the FOHP, PHH infants had lower FA and higher RD than FT and VPT (p\u3c.010), and a lower FA than the HG-IVH group (p\u3c.001). While the magnitude of AD in both the LVP and FOHP were consistently less in the PHH group on pairwise comparisons to the other groups, the differences were not significant (p\u3e.050). Ventricular size correlated negatively with FA, and positively with MD and RD (p\u3c.001) in both the LVP and FOHP. In the PHH group, FA was lower in the FOHP than in the LVP, which was contrary to the observed findings in the healthy infants (p\u3c.001). Nevertheless, there were no regional differences in AD, MD, and RD in the PHH group.
CONCLUSION: HG-IVH and PHH results in aberrant LVP/FOHP microstructure, with prominent abnormalities among the PHH group, most notably in the FOHP. Larger ventricular size was associated with greater magnitude of abnormality. LVP/FOHP dMRI measures may provide valuable biomarkers for future studies directed at improving the management and neurological outcomes of IVH/PHH
- …