391 research outputs found
Unconventional magnetic phase separation in -CoVO
We have explored the magnetism in the non-geometrically frustrated spin-chain
system -CoVO which possesses a complex magnetic exchange
network. Our neutron diffraction patterns at low temperatures (
= 6.6 K) are best described by a model in which two magnetic
phases coexist in a volume ratio 65(1) : 35(1), with each phase consisting of a
single spin modulation. This model fits previous studies and our observations
better than the model proposed by Lenertz in J. Phys. Chem. C 118,
13981 (2014), which consisted of one phase with two spin modulations. By
decreasing the temperature from , the minority phase of our
model undergoes an incommensurate-commensurate lock-in transition at =
5.6 K. Based on these results, we propose that phase separation is an
alternative approach for degeneracy-lifting in frustrated magnets
Exploring the fragile antiferromagnetic superconducting phase in CeCoIn5
CeCoIn5 is a heavy fermion Type-II superconductor which exhibits clear
indications of Pauli-limited superconductivity. A variety of measurements give
evidence for a transition at high magnetic fields inside the superconducting
state, when the field is applied either parallel to or perpendicular to the c
axis. When the field is perpendicular to the c axis, antiferromagnetic order is
observed on the high-field side of the transition, with a magnetic wavevector
of (q q 0.5), where q = 0.44 reciprocal lattice units. We show that this order
remains as the magnetic field is rotated out of the basal plane, but the
associated moment eventually disappears above 17 degrees, indicating that the
anomalies seen with the field parallel to the c axis are not related to this
magnetic order. We discuss the implications of this finding.Comment: Accepted Physical Review Letters, September 2010. 4 pages, 4 figure
The Absence of Vortex Lattice Melting in a Conventional Superconductor
The state of the vortex lattice extremely close to the superconducting to
normal transition in an applied magnetic field is investigated in high purity
niobium. We observe that thermal fluctuations of the order parameter broaden
the superconducting to normal transition into a crossover but no sign of a
first order vortex lattice melting transition is detected in measurements of
the heat capacity or the small angle neutron scattering (SANS) intensity.
Direct observation of the vortices via SANS always finds a well ordered vortex
lattice. The fluctuation broadening is considered in terms of the Lowest Landau
Level theory of critical fluctuations and scaling is found to occur over a
large H_{c2}(T) range
Square vortex lattice at anomalously low magnetic fields in electron-doped NdCeCuO
We report here on the first direct observations of the vortex lattice in the
bulk of electron-doped NdCeCuO single crystals. Using
small angle neutron scattering, we have observed a square vortex lattice with
the nearest-neighbors oriented at 45 from the Cu-O bond direction,
which is consistent with theories based on the d-wave superconducting gap.
However, the square symmetry persists down to unusually low magnetic fields.
Moreover, the diffracted intensity from the vortex lattice is found to decrease
rapidly with increasing magnetic field.Comment: 4 pages, 4 Figures, accepted for publication in Phys. Rev. Let
Glass phases of flux lattices in layered superconductors
We study a flux lattice which is parallel to superconducting layers, allowing
for dislocations and for disorder of both short wavelength and long wavelength.
We find that the long wavelength disorder has a significant effect on the phase
diagram -- it produces a first order transition within the Bragg glass phase
and leads to melting at strong disorder. This then allows a Friedel scenario of
2D superconductivity.Comment: 5 pages, 1 eps figure, Revte
Observation of a Triangular to Square Flux Lattice Phase Transition in YBCO
We have used the technique of small-angle neutron scattering to observe
magnetic flux lines directly in an YBCO single crystal at fields higher than
previously reported. For field directions close to perpendicular to the CuO2
planes, we find that the flux lattice structure changes smoothly from a
distorted triangular co-ordination to nearly perfectly square as the magnetic
induction approaches 11 T. The orientation of the square flux lattice is as
expected from recent d-wave theories, but is 45 deg from that recently observed
in LSCO
High magnetic field studies of the Vortex Lattice structure in YBa2Cu3O7
We report on small angle neutron scattering measurements of the vortex
lattice in twin-free YBa2Cu3O7, extending the previously investigated maximum
field of 11~T up to 16.7~T with the field applied parallel to the c axis. This
is the first microscopic study of vortex matter in this region of the
superconducting phase. We find the high field VL displays a rhombic structure,
with a field-dependent coordination that passes through a square configuration,
and which does not lock-in to a field-independent structure. The VL pinning
reduces with increasing temperature, but is seen to affect the VL correlation
length even above the irreversibility temperature of the lattice structure. At
high field and temperature we observe a melting transition, which appears to be
first order, with no detectable signal from a vortex liquid above the
transition
Polarized Neutron Laue Diffraction on a Crystal Containing Dynamically Polarized Proton Spins
We report on a polarized-neutron Laue diffraction experiment on a single
crystal of neodynium doped lanthanum magnesium nitrate hydrate containing
polarized proton spins. By using dynamic nuclear polarization to polarize the
proton spins, we demonstrate that the intensities of the Bragg peaks can be
enhanced or diminished significantly, whilst the incoherent background, due to
proton spin disorder, is reduced. It follows that the method offers unique
possibilities to tune continuously the contrast of the Bragg reflections and
thereby represents a new tool for increasing substantially the signal-to-noise
ratio in neutron diffraction patterns of hydrogenous matter.Comment: 5 pages, 3 figure
- …