820 research outputs found

    Comment on ``Spin and cyclotron energies of electrons in GaAs/GaAlAs quantum wells''

    Full text link
    In a recent publication, Pfeffer and Zawadzki [cond-mat/0607150; Phys. Rev. B 74, 115309 (2006)] attempted a calculation of electron g factor in III-V heterostructures. The authors emphasize that their outcome is in strong discrepancy with our original result [Ivchenko and Kiselev, Sov. Phys. Semicond. 26, 827 (1992)] and readily conclude that ``the previous theory of the g factor in heterostructures is inadequate''. We show here that the entire discrepancy can be tracked down to an additional contribution missing in the incomplete elimination procedure of Pfeffer and Zawadzki. This mistake equally affects their ``exact'' and approximate results. When the overlooked terms stemming from the nondiagonal Zeeman interaction between light hole and spin-orbit-split valence states are taken into account in the effective electron dispersion, the results of the both approaches applied to the three-level kp model become identical.Comment: 5 pages, no figure

    Resonant Fibonacci Quantum Well Structures

    Full text link
    We propose a resonant one-dimensional quasicrystal, namely, a multiple quantum well (MQW) structure satisfying the Fibonacci-chain rule with the golden ratio between the long and short inter-well distances. The resonant Bragg condition is generalized from the periodic to Fibonacci MQWs. A dispersion equation for exciton-polaritons is derived in the two-wave approximation, the effective allowed and forbidden bands are found. The reflection spectra from the proposed structures are calculated as a function of the well number and detuning from the Bragg condition.Comment: 5 pages, 3 figures, submitted to Phys. Rev.

    Optical properties of 1D photonic crystals based on multiple-quantum-well structures

    Full text link
    A general approach to the analysis of optical properties of photonic crystals based on multiple-quantum-well structures is developed. The effect of the polarization state and a non-perpendicular incidence of the electromagnetic wave is taken into account by introduction of an effective excitonic susceptibility and an effective optical width of the quantum wells. This approach is applied to consideration of optical properties of structures with a pre-engineered break of the translational symmetry. It is shown, in particular, that a layer with different exciton frequency placed at the middle of an MQW structure leads to appearance of a resonance suppression of the reflection.Comment: 9 pages, 3 figures, submitted to PR

    Spin relaxation of conduction electrons in (110)-grown quantum wells

    Full text link
    The theory of spin relaxation of conduction electrons is developed for zinc-blende-type quantum wells grown on (110)-oriented substrate. It is shown that, in asymmetric structures, the relaxation of electron spin initially oriented along the growth direction is characterized by two different lifetimes and leads to the appearance of an in-plane spin component. The magnitude and sign of the in-plane component are determined by the structure inversion asymmetry of the quantum well and can be tuned by the gate voltage. In an external magnetic field, the interplay of cyclotron motion of carriers and the Larmor precession of electron spin can result in a nonmonotonic dependence of the spin density on the magnetic field.Comment: 5 pages, 3 figure

    Valley Dependent Optoelectronics from Inversion Symmetry Breaking

    Full text link
    Inversion symmetry breaking allows contrasted circular dichroism in different k-space regions, which takes the extreme form of optical selection rules for interband transitions at high symmetry points. In materials where band-edges occur at noncentral valleys, this enables valley dependent interplay of electrons with light of different circular polarizations, in analogy to spin dependent optical activities in semiconductors. This discovery is in perfect harmony with the previous finding of valley contrasted Bloch band features of orbital magnetic moment and Berry curvatures from inversion symmetry breaking [Phys. Rev. Lett. 99, 236809 (2007)]. A universal connection is revealed between the k-resolved optical oscillator strength of interband transitions, the orbital magnetic moment and the Berry curvatures, which also provides a principle for optical measurement of orbital magnetization and intrinsic anomalous Hall conductivity in ferromagnetic systems. The general physics is demonstrated in graphene where inversion symmetry breaking leads to valley contrasted optical selection rule for interband transitions. We discuss graphene based valley optoelectronics applications where light polarization information can be interconverted with electronic information.Comment: Expanded version, to appear in Phys. Rev.

    Ratchet effects in two-dimensional systems with a lateral periodic potential

    Full text link
    Radiation-induced ratchet electric currents have been studied theoretically in graphene with a periodic noncentrosymmetric lateral potential. The ratchet current generated under normal incidence is shown to consist of two contributions, one of them being polarization-independent and proportional to the energy relaxation time, and another controlled solely by elastic scattering processes and sensitive to both the linear and circular polarization of radiation. Two realistic mechanisms of electron scattering in graphene are considered. For short-range defects, the ratchet current is helicity-dependent but independent of the direction of linear polarization. For the Coulomb impurity scattering, the ratchet current is forbidden for the radiation linearly polarized in the plane perpendicular to the lateral-potential modulation direction. For comparison, the ratchet currents in a quantum well with a lateral superlattice are calculated at low temperatures with allowance for the dependence of the momentum relaxation time on the electron energy.Comment: 8 pages, 4 figure
    • …
    corecore