10,288 research outputs found
Revised Predictions of Neutrino Fluxes from Pulsar Wind Nebulae
Several pulsar wind nebulae (PWN) have been detected in the TeV band in the last decade. TeV emission is typically interpreted in a purely leptonic scenario, but this often requires that the magnetic field in the nebula be much lower than the equipartition value, as well as the assumption of an enhanced density of target radiation at IR frequencies. In this work, we consider the possibility that, in addition to the relativistic electrons and positrons, relativistic hadrons are also present in these nebulae. Assuming that some of the emitted TeV photons are of hadronic origin, we compute the associated flux of ∼1-100 TeV neutrinos. We use IceCube non-detection to put constraints on the fraction of TeV photons that might be contributed by hadrons and estimate the number of neutrino events that can be expected from these sources in ANTARES and KM3Net
Free electron laser high gain equation and harmonic generation
The FEL integral equation is reviewed here and is studied under different contexts, accounting for diverse physical regimes. We include higher order harmonics and saturation effects, and explain the origin of scaling relations, widely exploited to describe either FEL dynamics or nonnlinear harmonic generation
Quasi Exact Solution of the Fisher Equation
We propose an accurate non numerical solution of the Fisher Equation (FE), capable of reproducing the known analy-
tical solutions and those obtained from a numerical analysis. The form we propose is based on educated guesses con-
cerning the possibility of merging diffusive and logistic behavior into a single formul
Cannabinoids in the treatment of epilepsy: current status and future prospects
Cannabidiol (CBD) is one of the prominent phytocannabinoids found in Cannabis sativa, differentiating from Δ9-tetrahydrocannabinol (THC) for its non-intoxicating profile and its antianxiety/antipsychotic effects. CBD is a multi-target drug whose anti-convulsant properties are supposed to be independent of endocannabinoid receptor CB1 and might be related to several underlying mechanisms, such as antagonism on the orphan GPR55 receptor, regulation of adenosine tone, activation of 5HT1A receptors and modulation of calcium intracellular levels. CBD is a lipophilic compound with low oral bioavailability (6%) due to poor intestinal absorption and high first-pass metabolism. Its exposure parameters are greatly influenced by feeding status (ie, high fatcontaining meals). It is mainly metabolized by cytochrome P 450 (CYP) 3A4 and 2C19, which it strongly inhibits. A proprietary formulation of highly purified, plant-derived CBD has been recently licensed as an adjunctive treatment for Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS), while it is being currently investigated in tuberous sclerosis complex. The regulatory agencies’ approval was granted based on four pivotal double-blind, placebocontrolled, randomized clinical trials (RCTs) on overall 154 DS patients and 396 LGS ones, receiving CBD 10 or 20 mg/kg/day BID as active treatment. The primary endpoint (reduction in monthly seizure frequency) was met by both CBD doses. Most patients reported adverse events (AEs), generally from mild to moderate and transient, which mainly consisted of somnolence, sedation, decreased appetite, diarrhea and elevation in aminotransferase levels, the last being documented only in subjects on concomitant valproate therapy. The interaction between CBD and clobazam, likely due to CYP2C19 inhibition, might contribute to some AEs, especially somnolence, but also to CBD clinical effectiveness. Cannabidivarin (CBDV), the propyl analogue of CBD, showed anti-convulsant properties in pre-clinical studies, but a plant-derived, purified proprietary formulation of CBDV recently failed the Phase II RCT in patients with uncontrolled focal seizures
Decoherence by Correlated Noise and Quantum Error Correction
We study the decoherence of a quantum computer in an environment which is
inherently correlated in time and space. We first derive the nonunitary time
evolution of the computer and environment in the presence of a stabilizer error
correction code, providing a general way to quantify decoherence for a quantum
computer. The general theory is then applied to the spin-boson model. Our
results demonstrate that effects of long-range correlations can be
systematically reduced by small changes in the error correction codes.Comment: 4 pages, 1 figure, Phys. Rev. Lett. in pres
- …