12,944 research outputs found

    Holographic Derivation of Entanglement Entropy from AdS/CFT

    Full text link
    A holographic derivation of the entanglement entropy in quantum (conformal) field theories is proposed from AdS/CFT correspondence. We argue that the entanglement entropy in d+1 dimensional conformal field theories can be obtained from the area of d dimensional minimal surfaces in AdS_{d+2}, analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our proposal perfectly reproduces the correct entanglement entropy in 2D CFT when applied to AdS_3. We also compare the entropy computed in AdS_5 \times S^5 with that of the free N=4 super Yang-Mills.Comment: 5 pages, 3 figures, Revtex, references adde

    Growth of Magnetic Fields Induced by Turbulent Motions

    Get PDF
    We present numerical simulations of driven magnetohydrodynamic (MHD) turbulence with weak/moderate imposed magnetic fields. The main goal is to clarify dynamics of magnetic field growth. We also investigate the effects of the imposed magnetic fields on the MHD turbulence, including, as a limit, the case of zero external field. Our findings are as follows. First, when we start off simulations with weak mean magnetic field only (or with small scale random field with zero imposed field), we observe that there is a stage at which magnetic energy density grows linearly with time. Runs with different numerical resolutions and/or different simulation parameters show consistent results for the growth rate at the linear stage. Second, we find that, when the strength of the external field increases, the equilibrium kinetic energy density drops by roughly the product of the rms velocity and the strength of the external field. The equilibrium magnetic energy density rises by roughly the same amount. Third, when the external magnetic field is not very strong (say, less than ~0.2 times the rms velocity when measured in the units of Alfven speed), the turbulence at large scales remains statistically isotropic, i.e. there is no apparent global anisotropy of order B_0/v. We discuss implications of our results on astrophysical fluids.Comment: 16 pages, 18 figures; ApJ, accepte

    Disorder-induced metal-insulator transitions in three-dimensional topological insulators and superconductors

    Full text link
    We discuss the effects of disorder in time-reversal invariant topological insulators and superconductors in three spatial dimensions. For three-dimensional topological insulator in symplectic (AII) symmetry class, the phase diagram in the presence of disorder and a mass term, which drives a transition between trivial and topological insulator phases, is computed numerically by the transfer matrix method. The numerics is supplemented by a field theory analysis (the large-NfN_f expansion where NfN_f is the number of valleys or Dirac cones), from which we obtain the correlation length exponent, and several anomalous dimensions at a non-trivial critical point separating a metallic phase and a Dirac semi-metal. A similar field theory approach is developed for disorder-driven transitions in symmetry class AIII, CI, and DIII. For these three symmetry classes, where topological superconductors are characterized by integer topological invariant, a complementary description is given in terms of the non-linear sigma model supplemented with a topological term which is a three-dimensional analogue of the Pruisken term in the integer quantum Hall effect.Comment: 19 pages, 5 figure

    Interacting topological phases and modular invariance

    Full text link
    We discuss a (2+1) dimensional topological superconductor with NfN_f left- and right-moving Majorana edge modes and a Z2×Z2\mathbb{Z}_2\times \mathbb{Z}_2 symmetry. In the absence of interactions, these phases are distinguished by an integral topological invariant NfN_f. With interactions, the edge state in the case Nf=8N_f=8 is unstable against interactions, and a Z2×Z2\mathbb{Z}_2\times \mathbb{Z}_2 invariant mass gap can be generated dynamically. We show that this phenomenon is closely related to the modular invariance of type II superstring theory. More generally, we show that the global gravitational anomaly of the non-chiral Majorana edge states is the physical manifestation of the bulk topological superconductors classified by Z8\mathbb{Z}_8.Comment: 11 page

    Field-driven topological glass transition in a model flux line lattice

    Full text link
    We show that the flux line lattice in a model layered HTSC becomes unstable above a critical magnetic field with respect to a plastic deformation via penetration of pairs of point-like disclination defects. The instability is characterized by the competition between the elastic and the pinning energies and is essentially assisted by softening of the lattice induced by a dimensional crossover of the fluctuations as field increases. We confirm through a computer simulation that this indeed may lead to a phase transition from crystalline order at low fields to a topologically disordered phase at higher fields. We propose that this mechanism provides a model of the low temperature field--driven disordering transition observed in neutron diffraction experiments on Bi2Sr2CaCu2O8{\rm Bi_2Sr_2CaCu_2O_8\, } single crystals.Comment: 11 pages, 4 figures available upon request via snail mail from [email protected]

    Equation of State in Numerical Relativistic Hydrodynamics

    Get PDF
    Relativistic temperature of gas raises the issue of the equation of state (EoS) in relativistic hydrodynamics. We study the EoS for numerical relativistic hydrodynamics, and propose a new EoS that is simple and yet approximates very closely the EoS of the single-component perfect gas in relativistic regime. We also discuss the calculation of primitive variables from conservative ones for the EoS's considered in the paper, and present the eigenstructure of relativistic hydrodynamics for a general EoS, in a way that they can be used to build numerical codes. Tests with a code based on the Total Variation Diminishing (TVD) scheme are presented to highlight the differences induced by different EoS's.Comment: To appear in the ApJS September 2006, v166n1 issue. Pdf with full resolution figures can be downloaded from http://canopus.cnu.ac.kr/ryu/ryuetal.pd

    Three-dimensional structures of the tracheal systems of Anopheles sinensis and Aedes togoi pupae

    Get PDF
    Mosquitoes act as a vector for the transmission of disease. The World Health Organization has recommended strict control of mosquito larvae because of their few, fixed, and findable features. The respiratory system of mosquito larvae and pupae in the water has a weak point. As aquatic organisms, mosquito larvae and pupae inhale atmosphere oxygen. However, the mosquito pupae have a non-feeding stage, unlike the larvae. Therefore, detailed study on the tracheal system of mosquito pupae is helpful for understanding their survival strategy. In this study, the three-dimensional (3D) structures of the tracheal systems of Anopheles sinensis and Aedes togoi pupae were comparatively investigated using synchrotron X-ray microscopic computed tomography. The respiratory frequencies of the dorsal trunks were also investigated. Interestingly, the pupae of the two mosquito species possess special tracheal systems of which the morphological and functional features are distinctively different. The respiratory frequency of Ae. togoi is higher than that of An. sinensis. These differences in the breathing phenomena and 3D structures of the respiratory systems of these two mosquito species provide an insight into the tracheal systems of mosquito pupae. ? 2017 The Author(s).111Ysciescopu
    corecore