3,804 research outputs found

    The G protein-gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation

    Get PDF
    Background— The molecular mechanism of increased background inward rectifier current (IK1) in atrial fibrillation (AF) is not fully understood. We tested whether constitutively active acetylcholine (ACh)-activated IK,ACh contributes to enhanced basal conductance in chronic AF (cAF). Methods and Results— Whole-cell and single-channel currents were measured with standard voltage-clamp techniques in atrial myocytes from patients with sinus rhythm (SR) and cAF. The selective IK,ACh blocker tertiapin was used for inhibition of IK,ACh. Whole-cell basal current was larger in cAF than in SR, whereas carbachol (CCh)-activated IK,ACh was lower in cAF than in SR. Tertiapin (0.1 to 100 nmol/L) reduced IK,ACh in a concentration-dependent manner with greater potency in cAF than in SR (−logIC50: 9.1 versus 8.2; P<0.05). Basal current contained a tertiapin-sensitive component that was larger in cAF than in SR (tertiapin [10 nmol/L]-sensitive current at −100 mV: cAF, −6.7±1.2 pA/pF, n=16/5 [myocytes/patients] versus SR, −1.7±0.5 pA/pF, n=24/8), suggesting contribution of constitutively active IK,ACh to basal current. In single-channel recordings, constitutively active IK,ACh was prominent in cAF but not in SR (channel open probability: cAF, 5.4±0.7%, n=19/9 versus SR, 0.1±0.05%, n=16/9; P<0.05). Moreover, IK1 channel open probability was higher in cAF than in SR (13.4±0.4%, n=19/9 versus 11.4±0.7%, n=16/9; P<0.05) without changes in other channel characteristics. Conclusions— Our results demonstrate that larger basal inward rectifier K+ current in cAF consists of increased IK1 activity and constitutively active IK,ACh. Blockade of IK,ACh may represent a new therapeutic target in AF

    Experimental demonstration of fractional orbital angular momentum entanglement of two photons

    Get PDF
    The singular nature of a non-integer spiral phase plate allows easy manipulation of spatial degrees of freedom of photon states. Using two such devices, we have observed very high dimensional (D > 3700) spatial entanglement of twin photons generated by spontaneous parametric down-conversion.Comment: submitted to Phys. Rev. Let

    Ultrasonic studies of the magnetic phase transition in MnSi

    Full text link
    Measurements of the sound velocities in a single crystal of MnSi were performed in the temperature range 4-150 K. Elastic constants, controlling propagation of longitudinal waves reveal significant softening at a temperature of about 29.6 K and small discontinuities at ∼\sim28.8 K, which corresponds to the magnetic phase transition in MnSi. In contrast the shear elastic moduli do not show any softening at all, reacting only to the small volume deformation caused by the magneto-volume effect. The current ultrasonic study exposes an important fact that the magnetic phase transition in MnSi, occurring at 28.8 K, is just a minor feature of the global transformation marked by the rounded maxima or minima of heat capacity, thermal expansion coefficient, sound velocities and absorption, and the temperature derivative of resistivity.Comment: 4 pages, 4 figure

    Precision tools and models to narrow in on the 750 GeV diphoton resonance

    Get PDF
    The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model.Comment: 184 pages, 24 figures; model files available at http://sarah.hepforge.org/Diphoton_Models.tar.gz; v2: added a few clarifications and reference

    The J_1-J_2 antiferromagnet with Dzyaloshinskii-Moriya interaction on the square lattice: An exact diagonalization study

    Full text link
    We examine the influence of an anisotropic interaction term of Dzyaloshinskii-Moriya (DM) type on the groundstate ordering of the J_1-J_2 spin-1/2-Heisenberg antiferromagnet on the square lattice. For the DM term we consider several symmetries corresponding to different crystal structures. For the pure J_1-J_2 model there are strong indications for a quantum spin liquid in the region of 0.4 < J_2/J_1 < 0.65. We find that a DM interaction influences the breakdown of the conventional antiferromagnetic order by i) shifting the spin liquid region, ii) changing the isotropic character of the groundstate towards anisotropic correlations and iii) creating for certain symmetries a net ferromagnetic moment.Comment: 7 pages, RevTeX, 6 ps-figures, to appear in J. Phys.: Cond. Ma

    Addition of Synthetic Feeding Attractant Increases Catches of Rhagoletis batava Hering and Carpomyia schineri Loew. in Fluorescent Yellow Sticky Traps

    Get PDF
    The addition of the synthetic Rhagoletis feeding attractant (consisting of ammonium carbonate and ammonium acetate, developed previously for Rhagoletis cerasi L.) to both fluorescent yellow or transparent sticky traps significantly increased catches of the fruit flies Rhagoletis batava Hering (pest of sea buckthorn) and Carpomyia schineri Loew. (pest of rose hips). Traps with lures were detecting the occurrence of both species 1–2 weeks before as compared to traps without lure, and quantitative aspects of the flight could be followed in more detail in traps with lure. Thus in detection and monitoring surveys, where sensitivity of the trap is highly important, the use of traps with synthetic lure added is strongly recommended

    Shear modulus of the hadron-quark mixed phase

    Full text link
    Robust arguments predict that a hadron-quark mixed phase may exist in the cores of some "neutron" stars. Such a phase forms a crystalline lattice with a shear modulus higher than that of the crust due to the high density and charge separation, even allowing for the effects of charge screening. This may lead to strong continuous gravitational-wave emission from rapidly rotating neutron stars and gravitational-wave bursts associated with magnetar flares and pulsar glitches. We present the first detailed calculation of the shear modulus of the mixed phase. We describe the quark phase using the bag model plus first-order quantum chromodynamics corrections and the hadronic phase using relativistic mean-field models with parameters allowed by the most massive pulsar. Most of the calculation involves treating the "pasta phases" of the lattice via dimensional continuation, and we give a general method for computing dimensionally continued lattice sums including the Debye model of charge screening. We compute all the shear components of the elastic modulus tensor and angle average them to obtain the effective (scalar) shear modulus for the case where the mixed phase is a polycrystal. We include the contributions from changing the cell size, which are necessary for the stability of the lower-dimensional portions of the lattice. Stability also requires a minimum surface tension, generally tens of MeV/fm^2 depending on the equation of state. We find that the shear modulus can be a few times 10^33 erg/cm^3, two orders of magnitude higher than the first estimate, over a significant fraction of the maximum mass stable star for certain parameter choices.Comment: 22 pages, 12 figures, version accepted by Phys. Rev. D, with the corrections to the shear modulus computation and Table I given in the erratu
    • …
    corecore