109,180 research outputs found
Forest Species Identification with High Spectral Resolution Data
Data collected over the Sleeping Bear Sand Dunes Test Site and the Saginaw Forest Test Site (Michigan) with the JPL Airborne Imaging Spectrometer and the Collins' Airborne Spectroradiometer are being used for forest species identification. The linear discriminant function has provided higher identification accuracies than have principal components analyses. Highest identification accuracies are obtained in the 450 to 520 nm spectral region. Spectral bands near 1,300, 1,685 and 2,220 nm appear to be important, also
On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers
This paper reports a comprehensive study on the gravitational wave (GW)
background from compact binary coalescences. We consider in our calculations
newly available observation-based neutron star and black hole mass
distributions and complete analytical waveforms that include post-Newtonian
amplitude corrections. Our results show that: (i) post-Newtonian effects cause
a small reduction in the GW background signal; (ii) below 100 Hz the background
depends primarily on the local coalescence rate and the average chirp
mass and is independent of the chirp mass distribution; (iii) the effects of
cosmic star formation rates and delay times between the formation and merger of
binaries are linear below 100 Hz and can be represented by a single parameter
within a factor of ~ 2; (iv) a simple power law model of the energy density
parameter up to 50-100 Hz is sufficient to be used
as a search template for ground-based interferometers. In terms of the
detection prospects of the background signal, we show that: (i) detection (a
signal-to-noise ratio of 3) within one year of observation by the Advanced LIGO
detectors (H1-L1) requires a coalescence rate of for binary neutron stars (binary black holes); (ii) this limit on
could be reduced 3-fold for two co-located detectors, whereas the
currently proposed worldwide network of advanced instruments gives only ~ 30%
improvement in detectability; (iii) the improved sensitivity of the planned
Einstein Telescope allows not only confident detection of the background but
also the high frequency components of the spectrum to be measured. Finally we
show that sub-threshold binary neutron star merger events produce a strong
foreground, which could be an issue for future terrestrial stochastic searches
of primordial GWs.Comment: A few typos corrected to match the published version in MNRA
Genome-Wide Association and Linkage Analysis of Quantitative Traits: Comparison pf Likelihood-Ratio Test and Conditional Score Statistic
Over the past decade, genetic analysis has shifted from linkage studies, which identify broad regions containing putative trait loci, to genome-wide association studies, which detect the association of a marker with a specific phenotype. Because linkage and association analysis provide complementary information, developing a method to combine these analyses may increase the power to detect a true association. In this paper we compare a linkage score and association score test as well as a newly proposed combination of these two scores with traditional linkage and association methods.National Institutes of Health (National Institute of General Medical Sciences R01 GM031575, National Center for Research Resources Shared Instrumentation grant 1S10RR163736-01A1
Community detection in multiplex networks using locally adaptive random walks
Multiplex networks, a special type of multilayer networks, are increasingly
applied in many domains ranging from social media analytics to biology. A
common task in these applications concerns the detection of community
structures. Many existing algorithms for community detection in multiplexes
attempt to detect communities which are shared by all layers. In this article
we propose a community detection algorithm, LART (Locally Adaptive Random
Transitions), for the detection of communities that are shared by either some
or all the layers in the multiplex. The algorithm is based on a random walk on
the multiplex, and the transition probabilities defining the random walk are
allowed to depend on the local topological similarity between layers at any
given node so as to facilitate the exploration of communities across layers.
Based on this random walk, a node dissimilarity measure is derived and nodes
are clustered based on this distance in a hierarchical fashion. We present
experimental results using networks simulated under various scenarios to
showcase the performance of LART in comparison to related community detection
algorithms
Granular rheology: measuring boundary forces with laser-cut leaf springs
In granular physics experiments, it is a persistent challenge to obtain the
boundary stress measurements necessary to provide full a rheological
characterization of the dynamics. Here, we describe a new technique by which
the outer boundary of a 2D Couette cell both confines the granular material and
provides spatially- and temporally- resolved stress measurements. This key
advance is enabled by desktop laser-cutting technology, which allows us to
design and cut linearly-deformable walls with a specified spring constant. By
tracking the position of each segment of the wall, we measure both the normal
and tangential stress throughout the experiment. This permits us to calculate
the amount of shear stress provided by basal friction, and thereby determine
accurate values of .Comment: 4 pages, 5 figures, powder and grains 2017 conferenc
Reconstruction with velocities
Reconstruction is becoming a crucial procedure of galaxy clustering analysis for future spectroscopic redshift surveys to obtain subper cent level measurement of the baryon acoustic oscillation scale. Most reconstruction algorithms rely on an estimation of the displacement field from the observed galaxy distribution. However, the displacement reconstruction degrades near the survey boundary due to incomplete data and the boundary effects extend to ∼100 Mpc/h within the interior of the survey volume. We study the possibility of using radial velocities measured from the cosmic microwave background observation through the kinematic Sunyaev-Zeldovich effect to improve performance near the boundary. We find that the boundary effect can be reduced to ∼30 − 40 Mpc/h with the velocity information from Simons Observatory. This is especially helpful for dense low redshift surveys where the volume is relatively small and a large fraction of total volume is affected by the boundary
- …