32 research outputs found

    Exercise in the management of knee and hip osteoarthritis

    Get PDF
    Purpose of review This review focuses on studies published during July 2001 to August 2017 of exercise as an intervention in knee and hip osteoarthritis, including its influence on an array of patient outcomes. Recent findings Studies continue to illustrate the efficacy of exercise in treating and managing osteoarthritis, with current literature more focused on the knee compared with the hip joint. Both traditional (e.g. strength, aerobic, flexibility) and more nontraditional (e.g. yoga, Tai Chi, aquatic) training modes improve patient outcomes related to joint symptoms, mobility, quality of life, psychological health, musculoskeletal properties, body composition, sleep, and fatigue. Exercise that is adequately dosed (e.g. frequency, intensity) and progressive in nature demonstrated the greatest improvements in patient outcomes. Supervised, partially supervised, and nonsupervised interventions can be successful in the treatment of osteoarthritis, but patient preference regarding level of supervision and mode of exercise may be key predictors in exercise adherence and degree of outcome improvement. A topic of increasing interest in osteoarthritis is the supplementary role of behavior training in exercise interventions. Summary Osteoarthritis is a complex, multifactorial disease that can be successfully managed and treated through exercise, with minimal risk for negative consequences. However, to have greatest impact, appropriate exercise prescription is needed. Efforts to achieve correct exercise doses and mitigate patient nonadherence are needed to lessen the lifelong burden of osteoarthritis

    Knee joint unloading and daily physical activity associate with cartilage T2 relaxation times 1 month after ACL injury

    Get PDF
    Osteoarthritis (OA) is prevalent after anterior cruciate ligament (ACL) injury, but mechanismsunderlying its development are poorly understood. The purpose of this study was to determine if gait biomechanics and daily physical activity (PA) associate with cartilage T2 relaxation times, a marker of collagen organization and water content, 1 month after ACL injury. Twenty-seven participants (15–35 years old) without chondral lesions completed magnetic resonance imaging, three-dimensional gait analysis, and 1 week of PA accelerometry. Interlimb differences and ratios were calculated for gait biomechanics and T2 relaxation times, respectively. Multiple linear regression models adjusted for age, sex, and concomitant meniscus injury were used to determine the association between gait biomechanics and PA with T2 relaxation times, respectively. Altered knee adduction moment (KAM) impulse, less knee flexion excursion (kEXC) and higher daily step counts accounted for 35.8%–65.8% of T2 relaxation time variation in the weightbearing and posterior cartilage of the medial and lateral compartment (all p ≤.011). KAM impulse was the strongest factor for T2 relaxation times in all models (all p ≤.001). Lower KAM impulse associated with longer T2 relaxation times in the injured medial compartment (β = −.720 to −.901) and shorter T2 relaxation in the lateral compartment (β =.713 to.956). At 1 month after ACL injury, altered KAM impulse, less kEXC, and higher PA associated with longer T2 relaxation times, which may indicate poorer cartilage health. Statement of Clinical Significance: Gait biomechanics and daily PA are modifiable targets that may improve cartilage health acutely after ACL injury and slow progression to OA

    Individual and cumulative measures of knee joint load associate with T2 relaxation times of knee cartilage in young, uninjured individuals: A pilot study

    Get PDF
    Background: Articular cartilage structure and chondrocyte health are sensitive and reliant on dynamic joint loading during activities. The purpose of this pilot study was to determine the association between measures of individual and cumulative knee joint loading with T2 relaxation times in the knee cartilage of young individuals without knee injury. Methods: Twelve participants (17–30 years old) without history of knee injury or surgery completed MRI, physical activity (PA), and biomechanical gait testing. T2 relaxation times were calculated in the cartilage within the patella and lateral and medial compartments. Accelerometry was used to measure mean daily step counts, minutes of PA, and % sedentary time over 7 days. Vertical ground reaction force, external knee joint moments and peak knee flexion angle were measured during stance phase of gait using three-dimensional motion capture. Cumulative knee joint loading was calculated as daily step count by external knee joint moment impulse. The relationship between measures of knee joint loading and T2 relaxation times was assessed using Pearson correlations. Results: Higher T2 relaxation times in the femoral and tibial cartilage were consistently correlated to greater body mass, daily step counts, moderate and vigorous PA, and peak knee joint moments (r = 0.10–0.84). Greater cumulative knee flexion and adduction loading was associated with higher T2 relaxation times in the femoral and tibial cartilage (r = 0.16–0.65). Conclusion: Preliminary findings suggest that individual loading factors and cumulative knee joint loading are associated with higher T2 relaxation times in the articular cartilage of young, healthy knees
    corecore