12,421 research outputs found
Search for new physics with neutrinos at Radioactive Ion Beam facilities
We propose applications of Radioactive Ion Beam facilities to investigate
physics beyond the Standard Model. In particular, we focus on the possible
measurement of coherent neutrino-nucleus scattering and on a search for sterile
neutrinos, by means of a low energy beta-beam with a Lorentz boost factor
. In the considered setup the collected radioactive ions are
sent inside a 4 detector. For the first application we provide the number
of events associated with neutrino-nucleus coherent scattering, when the
detector is filled in with a noble liquid. For the sterile search we consider
that the spherical detector is filled in with a liquid scintillator, and that
the neutrino detection channel is inverse-beta decay. We provide the exclusion
curves for the sterile neutrino mixing parameters, based upon the 3+1
formalism, depending upon the achievable ion intensity. Our results are
obtained both from total rates, and including spectral information with binning
in energy and in distance. The proposed experiment represents a possible
alternative to clarify the current anomalies observed in neutrino experiments.Comment: 9 pages, 6 figures. v2 - added 2 figure
Effects of an extensibility exercise program upon agility and extent flexibility of the groin and hamstring muscles
The effects of an extensibility exercise program upon agility and extent flexibility of the groin and hamstring muscles were examined.
[This is an excerpt from the abstract. For the complete abstract, please see the document.
A dynamical collective calculation of supernova neutrino signals
We present the first calculations with three flavors of collective and shock
wave effects for neutrino propagation in core-collapse supernovae using
hydroynamical density profiles and the S matrix formalism. We explore the
interplay between the neutrino-neutrino interaction and the effects of multiple
resonances upon the time signal of positrons in supernova observatories. A
specific signature is found for the inverted hierarchy and a large third
neutrino mixing angle and we predict, in this case, a dearth of lower energy
positrons in Cherenkov detectors midway through the neutrino signal and the
simultaneous revelation of valuable information about the original fluxes. We
show that this feature is also observable with current generation neutrino
detectors at the level of several sigmas.Comment: 4 pages, 5 figure
Active Brownian Motion Tunable by Light
Active Brownian particles are capable of taking up energy from their
environment and converting it into directed motion; examples range from
chemotactic cells and bacteria to artificial micro-swimmers. We have recently
demonstrated that Janus particles, i.e. gold-capped colloidal spheres,
suspended in a critical binary liquid mixture perform active Brownian motion
when illuminated by light. In this article, we investigate in some more details
their swimming mechanism leading to active Brownian motion. We show that the
illumination-borne heating induces a local asymmetric demixing of the binary
mixture generating a spatial chemical concentration gradient, which is
responsible for the particle's self-diffusiophoretic motion. We study this
effect as a function of the functionalization of the gold cap, the particle
size and the illumination intensity: the functionalization determines what
component of the binary mixture is preferentially adsorbed at the cap and the
swimming direction (towards or away from the cap); the particle size determines
the rotational diffusion and, therefore, the random reorientation of the
particle; and the intensity tunes the strength of the heating and, therefore,
of the motion. Finally, we harness this dependence of the swimming strength on
the illumination intensity to investigate the behaviour of a micro-swimmer in a
spatial light gradient, where its swimming properties are space-dependent
Transcriptional regulators of T Helper 17 cell differentiation in health and autoimmune diseases
T helper (Th) 17 cells are a subtype of CD4 T lymphocytes characterized by the expression of retinoic acid-receptor (RAR)-related orphan receptor (ROR)γt transcription factor, encoded by gene Rorc. These cells are implicated in the pathology of autoimmune inflammatory disorders as well as in the clearance of extracellular infections. The main function of Th17 cells is the production of cytokine called interleukin (IL)-17A. This review highlights recent advances in mechanisms regulating transcription of IL-17A. In particular, we described the lineage defining transcription factor RORγt and other factors that regulate transcription of Il17a or Rorc by interacting with RORγt or by binding their specific DNA regions, which may positively or negatively influence their expression. Moreover, we reported the eventual involvement of those factors in Th17-related diseases, such as multiple sclerosis, rheumatoid arthritis, psoriasis, and Crohn's disease, characterized by an exaggerated Th17 response. Finally, we discussed the potential new therapeutic approaches for Th17-related diseases targeting these transcription factors. The wide knowledge of transcriptional regulators of Th17 cells is crucial for the better understanding of the pathogenic role of these cells and for development of therapeutic strategies aimed at fighting Th17-related diseases
What about a beta-beam facility for low energy neutrinos?
A novel method to produce neutrino beams has recently been proposed : the
beta-beams. This method consists in using the beta-decay of boosted radioactive
nuclei to obtain an intense, collimated and pure neutrino beam. Here we propose
to exploit the beta-beam concept to produce neutrino beams of low energy. We
discuss the applications of such a facility as well as its importance for
different domains of physics. We focus, in particular, on neutrino-nucleus
interaction studies of interest for various open issues in astrophysics,
nuclear and particle physics. We suggest possible sites for a low energy
beta-beam facility.Comment: 4 pages, 1 figur
Low energy neutrino scattering measurements at future Spallation Source facilities
In the future several Spallation Source facilities will be available
worldwide. Spallation Sources produce large amount of neutrinos from
decay-at-rest muons and thus can be well adapted to accommodate
state-of-the-art neutrino experiments. In this paper low energy neutrino
scattering experiments that can be performed at such facilities are reviewed.
Estimation of expected event rates are given for several nuclei, electrons and
protons at a detector located close to the source. A neutrino program at
Spallation Sources comprises neutrino-nucleus cross section measurements
relevant for neutrino and core-collapse supernova physics, electroweak tests
and lepton-flavor violation searches.Comment: 12 pages, 4 figures, 5 table
- …