137 research outputs found

    The interaction of 11Li with 208Pb

    Full text link
    Background: 11Li is one of the most studied halo nuclei. The fusion of 11Li with 208Pb has been the subject of a number of theoretical studies with widely differing predictions, ranging over four orders of magnitude, for the fusion excitation function. Purpose: To measure the excitation function for the 11Li + 208Pb reaction. Methods: A stacked foil/degrader assembly of 208Pb targets was irradiated with a 11Li beam producing center of target beam energies from above barrier to near barrier energies (40 to 29 MeV). The intensity of the 11Li beam (chopped) was 1250 p/s and the beam on-target time was 34 hours. The alpha-decay of the stopped evaporation residues was detected in a alpha-detector array at each beam energy in the beam-off period (the beam was on for <= 5 ns and then off for 170 ns). Results: The 215At evaporation residues were associated with the fusion of 11Li with 208Pb. The 213,214At evaporation residues were formed by the breakup of 11Li into 9Li + 2n, with the 9Li fusing with 208Pb. The 214At evaporation residue appears to result from a "quasi-breakup" process. Conclusions: Most of 11Li + 208Pb interactions lead to breakup with a small fraction (<= 11%) leading to complete fusion.Comment: 25 pages, 11 figure

    On Some properties of Di-hadronic states

    Full text link
    The binding energies of di- hadronic states have been calculated assuming a 'molecular' interaction provided by the asymptotic expression of the residual confined gluon exchange potential between the component hadrons in the system. Meson- meson and meson- baryon states have been studied in detail and a mass formula has been used to calculate total mass of the 'molecules'.Comment: 11 page

    Heavy Flavour Baryons in Hyper Central Model

    Full text link
    Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hyper central description of the three-body problem. The confinement potential is assumed as hyper central coulomb plus power potential with power index υ\upsilon. The ground state masses of the heavy flavor, JP=1/2+J^P={1/2}^+ and 3/2+{3/2}^+ baryons are computed for different power index, ν \nu starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value in each case of quark combinations beyond the power index ν=1.0\nu=1.0.Comment: 10 pages, 4 figure

    Brilliant angle-independent structural colours preserved in weevil scales from the Swiss Pleistocene

    Get PDF
    Extant weevils exhibit a remarkable colour palette that ranges from muted monochromatic tones to rainbow-like iridescence, with the most vibrant colours produced by three-dimensional photonic nanostructures housed within cuticular scales. Although the optical properties of these nanostructures are well understood, their evolutionary history is not fully resolved, in part due to a poor knowledge of their fossil record. Here, we report three-dimensional photonic nanostructures preserved in brightly coloured scales of two weevils, belonging to the genus Phyllobius or Polydrusus, from the Pleistocene (16–10 ka) of Switzerland. The scales display vibrant blue, green and yellow hues that resemble those of extant Phyllobius/Polydrusus. Scanning electron microscopy and small-angle X-ray scattering analyses reveal that the subfossil scales possess a single-diamond photonic crystal nanostructure. In extant Phyllobius/Polydrusus, the near-angle-independent blue and green hues function primarily in crypsis. The preservation of far-field, angle-independent structural colours in the Swiss subfossil weevils and their likely function in substrate matching confirm the importance of investigating fossil and subfossil photonic nanostructures to understand the evolutionary origins and diversification of colours and associated behaviours (e.g. crypsis) in insects

    Search for low lying dipole strength in the neutron rich nucleus 26^{26}Ne

    Full text link
    Coulomb excitation of the exotic neutron-rich nucleus 26^{26}Ne on a nat^{nat}Pb target was measured at 58 A.MeV in order to search for low-lying E1 strength above the neutron emission threshold. Data were also taken on an nat^{nat}Al target to estimate the nuclear contribution. The radioactive beam was produced by fragmentation of a 95 A.MeV 40^{40}Ar beam delivered by the RIKEN Research Facility. The set-up included a NaI gamma-ray array, a charged fragment hodoscope and a neutron wall. Using the invariant mass method in the 25^{25}Ne+n channel, we observe a sizable amount of E1 strength between 6 and 10 MeV. The reconstructed 26^{26}Ne angular distribution confirms its E1 nature. A reduced dipole transition probability of B(E1)=0.49±\pm0.16 e2fm2e^2fm^2 is deduced. For the first time, the decay pattern of low-lying strength in a neutron-rich nucleus is obtained. The results are discussed in terms of a pygmy resonance centered around 9 MeV

    A search for deeply bound kaonic nuclear states

    Full text link
    We have measured proton and neutron energy spectra by stopping negative kaons on liquid helium4. Two distinct peak structures were found on both spectra, which were assigned to the formation of new kinds of strange stribaryons. In this paper, we summarize both results.Comment: 7 pages, 3 figures, HYP2003 conference proceeding

    Raditive decay of single charmed baryons

    Full text link
    The electromagnetic transitions between (JP=3/2+J^{P}={3/2}^{+}) and (JP=1/2+J^{P}={1/2}^{+}) baryons are important decay modes to observe new hadronic states experimentally. For the estimation of these transitions widths, we employ a non-relativistic quark potential model description with color coulomb plus linear confinement potential. Such a description has been employed to compute the ground state masses and magnetic moments of the single heavy flavor baryons. The magnetic moments of the baryons are obtained using the spin-flavor structure of the constituting quark composition of the baryon. Here, we also define an effective constituent mass of the quarks (ecqm) by taking into account the binding effects of the quarks within the baryon. The radiative transition widths are computed in terms of the magnetic moments of the baryon and the photon energy. Our results are compared with other theoretical models.Comment: 06 Pages, Presented at XVIII DAE-BRNS symposium on High energy Physics, Banaras Hindu University, Varansi, INDI

    Properties of Light Flavour Baryons in Hypercentral quark model

    Full text link
    The light flavour baryons are studied within the quark model using the hyper central description of the three-body system. The confinement potential is assumed as hypercentral coulomb plus power potential (hCPPνhCPP_\nu) with power index ν\nu. The masses and magnetic moments of light flavour baryons are computed for different power index, ν\nu starting from 0.5 to 1.5. The predicted masses and magnetic moments are found to attain a saturated value with respect to variation in ν\nu beyond the power index ν>\nu> 1.0. Further we computed transition magnetic moments and radiative decay width of light flavour baryons. The results are in good agreement with known experimental as well as other theoretical models.Comment: Accepted in Pramana J. of Physic

    The systematic study of the influence of neutron excess on the fusion cross sections using different proximity-type potentials

    Full text link
    Using different types of proximity potentials, we have examined the trend of variations of barrier characteristics (barrier height and its position) as well as fusion cross sections for 50 isotopic systems including various collisions of C, O, Mg, Si, S, Ca, Ar, Ti and Ni nuclei with 1≤N/Z<1.61\leq N/Z < 1.6 condition for compound systems. The results of our studies reveal that the relationships between increase of barrier positions and decrease of barrier heights are both linear with increase of N/ZN/Z ratio. Moreover, fusion cross sections also enhance linearly with increase of this ratio.Comment: 28 pages, 7 figures, 5 Table
    • …
    corecore