93 research outputs found
RNA stabilizes transcription-Dependent Chromatin Loops Induced By Nuclear Hormones
We show that transcription induced by nuclear receptors for estrogen (e2) or retinoic acid (RA) is associated with formation of chromatin loops that juxtapose the 5’ end (containing the promoter) with the enhancer and the 3′ polyA addition site of the target gene. We nd three loop con gurations which change as a function of time after induction: 1. RA or E2-induced loops which connect the 5′ end, the enhancer and the 3′ end of the gene, and are stabilized by RNA early after induction; 2. E2-independent loops whose stability does not require RNA; 3. Loops detected only by treatment of chromatin with RNAse H1 prior to hormonal induction. RNAse H1 digests RNA that occludes the relevant restriction sites, thus preventing detection of these loops. R-loops at the 5′ and 3′ ends of the RA or e2-target genes were demonstrated by immunoprecipitation with anti-DNA-RNA hybrid antibodies as well as by sensitivity to RNAse H1. The cohesin RAD21 subunit is preferentially recruited to the target sites upon RA or e2 induction of transcription. R21 binding to chromatin is eliminated by RNAse H1. We identi ed e2-induced and RNase H1-sensitive antisense RNAs located at the 5′ and 3′ ends of the e2-induced transcription unit which stabilize the loops and RAD21 binding to chromatin. This is the rst report of chromatin loops that form after gene induction that are maintained by RNA:DNA hybrids
DNA damage and Repair Modify DNA methylation and Chromatin Domain of the Targeted Locus: Mechanism of allele methylation polymorphism
We characterize the changes in chromatin structure, DNA methylation and transcription during and after homologous DNA repair (HR). We find that HR modifies the DNA methylation pattern of the repaired segment. HR also alters local histone H3 methylation as well chromatin structure by inducing DNA-chromatin loops connecting the 5' and 3' ends of the repaired gene. During a two-week period after repair, transcription-associated demethylation promoted by Base Excision Repair enzymes further modifies methylation of the repaired DNA. Subsequently, the repaired genes display stable but diverse methylation profiles. These profiles govern the levels of expression in each clone. Our data argue that DNA methylation and chromatin remodelling induced by HR may be a source of permanent variation of gene expression in somatic cells
The v-Ki-Ras Oncogene Alters cAMP Nuclear Signaling by Regulating the Location and the Expression of cAMP-dependent Protein Kinase IIβ
The v-Ki-Ras oncoprotein dedifferentiates thyroid cells and inhibits nuclear accumulation of the catalytic subunit of cAMP-dependent protein kinase. After activation of v-Ras or protein kinase C, the regulatory subunit of type II protein kinase A, RIIbeta, translocates from the membranes to the cytosol. RIIbeta mRNA and protein were eventually depleted. These effects were mimicked by expressing AKAP45, a truncated version of the RII anchor protein, AKAP75. Because AKAP45 lacks membrane targeting domains, it induces the translocation of PKAII to the cytoplasm. Expression of AKAP45 markedly decreased thyroglobulin mRNA levels and inhibited accumulation of C-PKA in the nucleus. Our results suggest that: 1) The localization of PKAII influences cAMP signaling to the nucleus; 2) Ras alters the localization and the expression of PKAII; 3) Translocation of PKAII to the cytoplasm reduces nuclear C-PKA accumulation, resulting in decreased expression of cAMP-dependent genes, including RIIbeta, TSH receptor, and thyroglobulin. The loss of RIIbeta permanently down-regulates thyroid-specific gene expression
DNA Damage, Homology-Directed Repair, and DNA Methylation
To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%–4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, ~50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2′-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments
cAMP-PKA signaling to the mitochondria: protein scaffold, mRNA and phosphatases.
Energy metabolism and, specifically, the coupling of mitochondria to growth and survival is controlled by the cAMP-PKA pathway in yeast. In higher eukaryotes, cAMP signaling originating at the plasma membrane is distributed to different subcellular districts by cAMP waves received by PKA bound to PKA anchor proteins (AKAPs) tethered to these compartments. This review focuses on the subgroup of AKAPs that anchor PKA to the mitochondrial outer membrane (mtAKAPs). Only PKA anchored to mtAKAPs can efficiently transmit cAMP signals to mitochondria. mtAKAP complexes are remarkably heterogeneous. In addition to PKA regulatory subunits, they may include mRNAs, tyrosine phosphatase(s) and tyrosine kinase(s). Selective regulation of these components by cAMP-PKA integrates various signal transduction pathways and can determine which subcellular compartment receives the signal. Unveiling the interactions among the components of these large complexes will shed light on how cAMP and PKA regulate vital mitochondrial processes
A cell type specific factor recognizes the rat thyroglobulin promoter.
We have fused a 900 base pair long DNA segment containing the transcriptional start site of the rat thyroglobulin (Tg) gene to the bacterial gene for chloramphenicol acetyltransferase (cat). The fusion gene has been introduced into three different cell lines derived from the rat thyroid gland and into a rat liver cell line. Expression of the fusion gene was detected only in the one thyroid cell line that is able to express the endogenous Tg gene. The minimum DNA sequence required for the cell type specific expression was determined by deletion analysis; it extends 170 nucleotides upstream of the transcription initiation site. The Tg promoter contains a readily detectable binding sites for a factor present in salt extracts of thyroid cell nuclei. This binding site is not recognized by the nuclear extracts of any other cell type that we have tested, suggesting that it may help mediate the cell type specific expression of the Tg gene
- …