135 research outputs found

    Interaction and disorder in bilayer counterflow transport at filling factor one

    Full text link
    We study high mobility, interacting GaAs bilayer hole systems exhibiting counterflow superfluid transport at total filling factor ν=1\nu=1. As the density of the two layers is reduced, making the bilayer more interacting, the counterflow Hall resistivity (ρxy\rho_{xy}) decreases at a given temperature, while the counterflow longitudinal resistivity (ρxx\rho_{xx}), which is much larger than ρxy\rho_{xy}, hardly depends on density. On the other hand, a small imbalance in the layer densities can result in significant changes in ρxx\rho_{xx} at ν=1\nu=1, while ρxy\rho_{xy} remains vanishingly small. Our data suggest that the finite ρxx\rho_{xx} at ν=1\nu=1 is a result of mobile vortices in the superfluid created by the ubiquitous disorder in this system.Comment: 4 pages, 3 figure

    Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing

    Full text link
    We study interacting GaAs bilayer hole systems, with very small interlayer tunneling, in a counterflow geometry where equal currents are passed in opposite directions in the two, independently contacted layers. At low temperatures, both the longitudinal and Hall counterflow resistances tend to vanish in the quantum Hall state at total bilayer filling ν=1\nu=1, demonstrating the pairing of oppositely charged carriers in opposite layers. The temperature dependence of the counterflow Hall resistance is anomalous compared to the other transport coefficients: even at relatively high temperatures (\sim600mK), it develops a very deep minimum, with a value that is about an order of magnitude smaller than the longitudinal counterflow resistivity.Comment: 4+ pages, 4 figure

    Resistance Spikes at Transitions between Quantum Hall Ferromagnets

    Full text link
    We report a new manifestation of first-order magnetic transitions in two-dimensional electron systems. This phenomenon occurs in aluminum arsenide quantum wells with sufficiently low carrier densities and appears as a set of hysteretic spikes in the resistance of a sample placed in crossed parallel and perpendicular magnetic fields, each spike occurring at the transition between states with different partial magnetizations. Our experiments thus indicate that the presence of magnetic domains at the transition starkly increases dissipation, an effect also suspected in other ferromagnetic materials. Analysis of the positions of the transition spikes allows us to deduce the change in exchange-correlation energy across the magnetic transition, which in turn will help improve our understanding of metallic ferromagnetism.Comment: 6 pages, 3 figure

    Role of finite layer thickness in spin-polarization of GaAs 2D electrons in strong parallel magnetic fields

    Full text link
    We report measurements and calculations of the spin-polarization, induced by a parallel magnetic field, of interacting, dilute, two-dimensional electron systems confined to GaAs/AlGaAs heterostructures. The results reveal the crucial role the non-zero electron layer thickness plays: it causes a deformation of the energy surface in the presence of a parallel field, leading to enhanced values for the effective mass and g-factor and a non-linear spin-polarization with field.Comment: 4 pages, 4 figures, Fig. 4 has been replaced from the previous version, minor changes in the tex

    Effective mass suppression upon complete spin-polarization in an isotropic two-dimensional electron system

    Full text link
    We measure the effective mass (m*) of interacting two-dimensional electrons confined to a 4.5 nm-wide AlAs quantum well. The electrons in this well occupy a single out-of-plane conduction band valley with an isotropic in-plane Fermi contour. When the electrons are partially spin polarized, m* is larger than its band value and increases as the density is reduced. However, as the system is driven to full spin-polarization via the application of a strong parallel magnetic field, m* is suppressed down to values near or even below the band mass. Our results are consistent with the previously reported measurements on wide AlAs quantum wells where the electrons occupy an in-plane valley with an anisotropic Fermi contour and effective mass, and suggest that the effective mass suppression upon complete spin polarization is a genuine property of interacting two-dimensional electrons.Comment: 6 pages, 7 figures, accepted for publication in Phys. Rev.
    corecore