394 research outputs found

    "Feminist Biography": Reconsidered

    Get PDF

    明æČ»æ™‚ä»ŁăźçčŠç¶­ć·„栎た愳淄

    Get PDF
    This paper calls for more weight to be given to how Meiji textile factory women perceived their own lives. Were they aware of the roles they played in Japanese industrialization or in maintaining landlord-tenant relationships in the countryside. If so what were their views of these roles? In what ways--if any--did they see themselves as victims? Did they see themselves as belonging to a group called factory workers? How did they define themselves

    Stability of Bose-Einstein Condensates Confined in Traps

    Full text link
    Bose-Einstein condensation has been realized in dilute atomic vapors. This achievement has generated immerse interest in this field. Presented is a review of recent theoretical research into the properties of trapped dilute-gas Bose-Einstein condensates. Among them, stability of Bose-Einstein condensates confined in traps is mainly discussed. Static properties of the ground state are investigated by use of the variational method. The anlysis is extended to the stability of two-component condensates. Time-development of the condensate is well-described by the Gross-Pitaevskii equation which is known in nonlinear physics as the nonlinear Schr\"odinger equation. For the case that the inter-atomic potential is effectively attractive, a singularity of the solution emerges in a finite time. This phenomenon which we call collapse explains the upper bound for the number of atoms in such condensates under traps.Comment: 74 pages with 12 figures, submitted to the review section of International Journal of Modern Physics

    Effects of ac-field amplitude on the dielectric susceptibility of relaxors

    Full text link
    The thermally activated flips of the local spontaneous polarization in relaxors were simulated to investigate the effects of the applied-ac-field amplitude on the dielectric susceptibility. It was observed that the susceptibility increases with increasing the amplitude at low temperatures. At high temperatures, the susceptibility experiences a plateau and then drops. The maximum in the temperature dependence of susceptibility shifts to lower temperatures when the amplitude increases. A similarity was found between the effects of the amplitude and frequency on the susceptibility.Comment: 8 pages, 7 figures, Phys. Rev. B (in July 1st

    Exact results on the dynamics of multi-component Bose-Einstein condensate

    Full text link
    We study the time-evolution of the two dimensional multi-component Bose-Einstein condensate in an external harmonic trap with arbitrary time-dependent frequency. We show analytically that the time-evolution of the total mean-square radius of the wave-packet is determined in terms of the same solvable equation as in the case of a single-component condensate. The dynamics of the total mean-square radius is also the same for the rotating as well as the non-rotating multi-component condensate. We determine the criteria for the collapse of the condensate at a finite time. Generalizing our previous work on a single-component condensate, we show explosion-implosion duality in the multi-component condensate.Comment: Two-column 6 pages, RevTeX, no figures(v1); Added an important reference, version to appear in Physical Review A (v2

    Soft Phonon Anomalies in the Relaxor Ferroelectric Pb(Zn_1/3Nb_2/3)_0.92Ti_0.08O_3

    Full text link
    Neutron inelastic scattering measurements of the polar TO phonon mode dispersion in the cubic relaxor Pb(Zn_1/3Nb_2/3)_0.92Ti_0.08O_3 at 500K reveal anomalous behavior in which the optic branch appears to drop precipitously into the acoustic branch at a finite value of the momentum transfer q=0.2 inverse Angstroms, measured from the zone center. We speculate this behavior is the result of nanometer-sized polar regions in the crystal.Comment: 4 pages, 4 figure

    Dynamical effects of the nanometer-sized polarized domains in Pb(Zn1/3Nb2/3)O3

    Full text link
    Recent neutron scattering measurements performed on the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3 (PZN-8%PT) in its cubic phase at 500 K, have revealed an anomalous ridge of inelastic scattering centered ~0.2 A-1 from the zone center (Gehring et al., Phys. Rev. Lett. 84, 5216 (2000)). This ridge of scattering resembles a waterfall when plotted as a phonon dispersion diagram, and extends vertically from the transverse acoustic (TA) branch near 4 meV to the transverse optic (TO) branch near 9 meV. No zone center optic mode was found. We report new results from an extensive neutron scattering study of pure PZN that exhibits the same waterfall feature. We are able to model the dynamics of the waterfall using a simple coupled-mode model that assumes a strongly q-dependent optic mode linewidth Gamma1(q) that increases sharply near 0.2 A-1 as one approaches the zone center. This model was motivated by the results of Burns and Dacol in 1983, who observed the formation of a randomly-oriented local polarization in PZN at temperatures far above its ferroelectric phase transition temperature. The dramatic increase in Gamma1 is believed to occur when the wavelength of the optic mode becomes comparable to the size of the small polarized micro-regions (PMR) associated with this randomly-oriented local polarization, with the consequence that longer wavelength optic modes cannot propagate and become overdamped. Below Tc=410 K, the intensity of the waterfall diminishes. At lowest temperatures ~30 K the waterfall is absent, and we observe the recovery of a zone center transverse optic mode near 10.5 meV.Comment: 8 pages, 9 figures (one color). Submitted to Physical Review

    Nonlocal interactions prevent collapse in negative scattering length Bose-Einstein gases

    Full text link
    We study the effect of nonlocality on the collapse properties of a self-focusing Nonlinear Schr\"odinger system related to Bose-Einstein condensation problems. Using a combination of moment techniques, time dependent variational methods and numerical simulations we present evidences in support of the hypothesis that nonlocal attractively interacting condensates cannot collapse when the dominant interaction term is due to finite range interactions. Instead there apppear oscillations of the wave packet with a localized component whose size is of the order of the range of interactions. We discuss the implications of the results to collapse phenomena in negative scattering length Bose-Einstein condensates

    Stability of trapped Bose-Einstein condensates

    Full text link
    In three-dimensional trapped Bose-Einstein condensate (BEC), described by the time-dependent Gross-Pitaevskii-Ginzburg equation, we study the effect of initial conditions on stability using a Gaussian variational approach and exact numerical simulations. We also discuss the validity of the criterion for stability suggested by Vakhitov and Kolokolov. The maximum initial chirp (initial focusing defocusing of cloud) that can lead a stable condensate to collapse even before the number of atoms reaches its critical limit is obtained for several specific cases. When we consider two- and three-body nonlinear terms, with negative cubic and positive quintic terms, we have the conditions for the existence of two phases in the condensate. In this case, the magnitude of the oscillations between the two phases are studied considering sufficient large initial chirps. The occurrence of collapse in a BEC with repulsive two-body interaction is also shown to be possible.Comment: 15 pages, 11 figure

    Nonlinear magnetoinductive transmission lines

    Full text link
    Power transmission in one-dimensional nonlinear magnetic metamaterials driven at one end is investigated numerically and analytically in a wide frequency range. The nonlinear magnetic metamaterials are composed of varactor-loaded split-ring resonators which are coupled magnetically through their mutual inductances, forming thus a magnetoiductive transmission line. In the linear limit, significant power transmission along the array only appears for frequencies inside the linear magnetoinductive wave band. We present analytical, closed form solutions for the magnetoinductive waves transmitting the power in this regime, and their discrete frequency dispersion. When nonlinearity is important, more frequency bands with significant power transmission along the array may appear. In the equivalent circuit picture, the nonlinear magnetoiductive transmission line driven at one end by a relatively weak electromotive force, can be modeled by coupled resistive-inductive-capacitive (RLC) circuits with voltage-dependent capacitance. Extended numerical simulations reveal that power transmission along the array is also possible in other than the linear frequency bands, which are located close to the nonlinear resonances of a single nonlinear RLC circuit. Moreover, the effectiveness of power transmission for driving frequencies in the nonlinear bands is comparable to that in the linear band. Power transmission in the nonlinear bands occurs through the linear modes of the system, and it is closely related to the instability of a mode that is localized at the driven site.Comment: 11 pages, 11 figures, submitted to International Journal of Bifurcation and Chao
    • 

    corecore