737 research outputs found
A Study to Determine the Effectiveness of the Program of Instruction for the Department of Labor\u27s Transition Assistance Program for the Military
The research questions that will be analyzed during the Transition Assistance Program and its six primary areas were as follows: 1. Do retiring military personnel or downsized personnel obtain more information on conducting a smooth transition from military to civilian careers? 2. Is the program structure more for the understanding of the Non commissioned or Commissioned Officer
Decreased susceptibility to ciprofloxacin in Salmonella enterica serotype typhi, United Kingdom.
In 1999, 23% of Salmonella enterica serotype Typhi isolates from patients in the United Kingdom exhibited decreased susceptibility to ciprofloxacin (MIC 0.25-1.0 mg/L); more than half were also resistant to chloramphenicol, ampicillin, and trimethoprim. Increasing numbers of treatment failures have been noted. Most infections have been in patients with a recent history of travel to India and Pakistan
Nonlinear wave propagation and reconnection at magnetic X-points in the Hall MHD regime
The highly dynamical, complex nature of the solar atmosphere naturally
implies the presence of waves in a topologically varied magnetic environment.
Here, the interaction of waves with topological features such as null points is
inevitable and potentially important for energetics. The low resistivity of the
solar coronal plasma implies that non-MHD effects should be considered in
studies of magnetic energy release in this environment. This paper investigates
the role of the Hall term in the propagation and dissipation of waves, their
interaction with 2D magnetic X-points and the nature of the resulting
reconnection. A Lagrangian remap shock-capturing code (Lare2d) is used to study
the evolution of an initial fast magnetoacoustic wave annulus for a range of
values of the ion skin depth in resistive Hall MHD. A magnetic null-point
finding algorithm is also used to locate and track the evolution of the
multiple null-points that are formed in the system. Depending on the ratio of
ion skin depth to system size, our model demonstrates that Hall effects can
play a key role in the wave-null interaction. In particular, the initial
fast-wave pulse now consists of whistler and ion-cyclotron components; the
dispersive nature of the whistler wave leads to (i) earlier interaction with
the null, (ii) the creation of multiple additional, transient nulls and, hence,
an increased number of energy release sites. In the Hall regime, the relevant
timescales (such as the onset of reconnection and the period of the oscillatory
relaxation) of the system are reduced significantly, and the reconnection rate
is enhanced.Comment: 13 pages, 10 figure
Salmonella typhimurium phage types linked with pigs and their association with human infection in England and Wales
The most common Salmonella isolated from pigs in the United Kingdom is Salmonella enterica serovar Typhimurium. Phage typing continues to be a useful method for strain differentiation of this serovar and the predominant phage types in pigs, include definitive phage types (DT) 104, 104b, 193 and provisional phage type (PT) U302. In 2002 the Laboratory of Enteric Pathogens (LEP) reported on 1221 human cases infected with strains of these phage types. Although some of the infections were linked to pig products the majority were due to other sources
Computational analysis of dispersive and nonlinear 2D materials by using a GS-FDTD method
In this paper, we propose a novel numerical method for modeling nanostructures containing dispersive and nonlinear two-dimensional (2D) materials, by incorporating a nonlinear generalized source (GS) into the finite-difference time-domain (FDTD) method. Starting from the expressions of nonlinear currents characterizing nonlinear processes in 2D materials, such as second- and third-harmonic generation, we prove that the nonlinear response of such nanostructures can be rigorously determined using two linear simulations. In the first simulation, one computes the linear response of the system upon its excitation by a pulsed incoming wave, whereas in the second one the system is excited by a nonlinear GS, which is determined by the linear near-field calculated in the first linear simulation. This new method is particularly suitable for the analysis of dispersive and nonlinear 2D materials, such as graphene and transition-metal dichalcogenides, chiefly because, unlike the case of most alternative approaches, it does not require the thickness of the 2D material. To investigate the accuracy of the proposed GS-FDTD method and illustrate its versatility, the linear and nonlinear responses of graphene gratings have been calculated and compared to results obtained using alternative methods. Importantly, the proposed GS-FDTD can be extended to three-dimensional bulk nonlinearities, rendering it a powerful tool for the design and analysis of more complicated nanodevices
The fractional integrated bi- parameter smooth transition autoregressive model
This paper introduces the fractionally integrated Bi-parameter smooth transition autoregressive model (FI-BSTAR model) as an extension of BSTAR model proposed by Siliverstovs (2005) and the fractionally integrated STAR model (FI-STAR model) proposed by van Dijk et al. (2002). Our FI-BSTAR model is able to simultaneously describe persistence and asymmetric smooth structural change in time series. An empirical application using monthly growth rates of the American producer price index is provided.Long Memory, Nonlinearity, Asymmetry, STAR models.
Particle dynamics in a non-flaring solar active region model
The aim of this work is to investigate and characterise particle behaviour in a (observationally-driven) 3D MHD model of the solar atmosphere above a slowly evolving, non-flaring active region. We use a relativistic guiding-centre particle code to investigate particle acceleration in a single snapshot of the 3D MHD simulation. Despite the lack of flare-like behaviour in the active region, direct acceleration of electrons and protons to non-thermal energies (≲ 42 MeV) was found, yielding spectra with high-energy tails which conform to a power law. Examples of particle dynamics, including particle trapping caused by local electric rather than magnetic field effects, are observed and discussed, together with implications for future experiments which simulate non-flaring active region heating and reconnection.Publisher PDFPeer reviewe
Is magnetic topology important for heating the solar atmosphere?
CEP and JT acknowledge the support of STFC through the St Andrew’s SMTG consolidated grant. JEHS is supported by STFC as a PhD student. SJE is supported STFC through the Durham University Impact Acceleration Account.Magnetic fields permeate the entire solar atmosphere weaving an extremely complex pattern on both local and global scales. In order to understand the nature of this tangled web of magnetic fields, its magnetic skeleton, which forms the boundaries between topologically distinct flux domains, may be determined. The magnetic skeleton consists of null points, separatrix surfaces, spines and separators. The skeleton is often used to clearly visualize key elements of the magnetic configuration, but parts of the skeleton are also locations where currents and waves may collect and dissipate. In this review, the nature of the magnetic skeleton on both global and local scales, over solar cycle time scales, is explained. The behaviour of wave pulses in the vicinity of both nulls and separators is discussed and so too is the formation of current layers and reconnection at the same features. Each of these processes leads to heating of the solar atmosphere, but collectively do they provide enough heat, spread over a wide enough area, to explain the energy losses throughout the solar atmosphere? Here, we consider this question for the three different solar regions: Active regions, open-field regions and the quiet Sun. We find that the heating of active regions and open-field regions is highly unlikely to be due to reconnection or wave dissipation at topological features, but it is possible that these may play a role in the heating of the quiet Sun. In active regions, the absence of a complex topology may play an important role in allowing large energies to build up and then, subsequently, be explosively released in the form of a solar flare. Additionally, knowledge of the intricate boundaries of open-field regions (which the magnetic skeleton provides) could be very important in determining the main acceleration mechanism(s) of the solar wind.PostprintPeer reviewe
- …