897 research outputs found
Bisous model - detecting filamentary patterns in point processes
The cosmic web is a highly complex geometrical pattern, with galaxy clusters
at the intersection of filaments and filaments at the intersection of walls.
Identifying and describing the filamentary network is not a trivial task due to
the overwhelming complexity of the structure, its connectivity and the
intrinsic hierarchical nature. To detect and quantify galactic filaments we use
the Bisous model, which is a marked point process built to model
multi-dimensional patterns. The Bisous filament finder works directly with the
galaxy distribution data and the model intrinsically takes into account the
connectivity of the filamentary network. The Bisous model generates the visit
map (the probability to find a filament at a given point) together with the
filament orientation field. Using these two fields, we can extract filament
spines from the data. Together with this paper we publish the computer code for
the Bisous model that is made available in GitHub. The Bisous filament finder
has been successfully used in several cosmological applications and further
development of the model will allow to detect the filamentary network also in
photometric redshift surveys, using the full redshift posterior. We also want
to encourage the astro-statistical community to use the model and to connect it
with all other existing methods for filamentary pattern detection and
characterisation.Comment: 12 pages, 6 figures, accepted by Astronomy and Computin
Galaxy filaments as pearl necklaces
Context. Galaxies in the Universe form chains (filaments) that connect groups
and clusters of galaxies. The filamentary network includes nearly half of the
galaxies and is visually the most striking feature in cosmological maps.
Aims. We study the distribution of galaxies along the filamentary network,
trying to find specific patterns and regularities.
Methods. Galaxy filaments are defined by the Bisous model, a marked point
process with interactions. We use the two-point correlation function and the
Rayleigh Z-squared statistic to study how galaxies and galaxy groups are
distributed along the filaments.
Results. We show that galaxies and groups are not uniformly distributed along
filaments, but tend to form a regular pattern. The characteristic length of the
pattern is around 7 Mpc/h. A slightly smaller characteristic length 4 Mpc/h can
also be found, using the Z-squared statistic.
Conclusions. We find that galaxy filaments in the Universe are like pearl
necklaces, where the pearls are galaxy groups distributed more or less
regularly along the filaments. We propose that this well defined characteristic
scale could be used to test various cosmological models and to probe
environmental effects on the formation and evolution of galaxies.Comment: 8 pages, 9 figures, 1 table, accepted for publication in A&
Alignment of galaxies relative to their local environment in SDSS-DR8
We study the alignment of galaxies relative to their local environment in
SDSS-DR8 and, using these data, we discuss evolution scenarios for different
types of galaxies. We defined a vector field of the direction of anisotropy of
the local environment of galaxies. We summed the unit direction vectors of all
close neighbours of a given galaxy in a particular way to estimate this field.
We found the alignment angles between the spin axes of disc galaxies, or the
minor axes of elliptical galaxies, and the direction of anisotropy. The
distributions of cosines of these angles are compared to the random
distributions to analyse the alignment of galaxies. Sab galaxies show
perpendicular alignment relative to the direction of anisotropy in a sparse
environment, for single galaxies and galaxies of low luminosity. Most of the
parallel alignment of Scd galaxies comes from dense regions, from 2...3 member
groups and from galaxies with low luminosity. The perpendicular alignment of S0
galaxies does not depend strongly on environmental density nor luminosity; it
is detected for single and 2...3 member group galaxies, and for main galaxies
of 4...10 member groups. The perpendicular alignment of elliptical galaxies is
clearly detected for single galaxies and for members of < 11 member groups; the
alignment increases with environmental density and luminosity. We confirm the
existence of fossil tidally induced alignment of Sab galaxies at low z. The
alignment of Scd galaxies can be explained via the infall of matter to
filaments. S0 galaxies may have encountered relatively massive mergers along
the direction of anisotropy. Major mergers along this direction can explain the
alignment of elliptical galaxies. Less massive, but repeated mergers are
possibly responsible for the formation of elliptical galaxies in sparser areas
and for less luminous elliptical galaxies.Comment: 15 pages, 15 figures, accepted for publication in A&
SDSS superclusters: morphology and galaxy content
We compare the galaxy populations in superclusters of different morphology in
the nearby Universe (180 < d < 270 Mpc) to see whether the inner structure and
overall morphology of superclusters are important in shaping galaxy properties
in superclusters. Supercluster morphology has been found with Minkowski
functionals. We analyse the probability density distributions of colours,
morphological types, stellar masses, star formation rates (SFR) of galaxies,
and the peculiar velocities of the main galaxies in groups in superclusters of
filament and spider types, and in the field. We show that the fraction of red,
early-type, low SFR galaxies in filament-type superclusters is higher than in
spider-type superclusters; in low-density global environments their fraction is
lower than in superclusters. In all environments the fraction of red, high
stellar mass, and low SFR galaxies in rich groups is higher than in poor
groups. In superclusters of spider morphology red, high SFR galaxies have
higher stellar masses than in filament-type superclusters. Groups of equal
richness host galaxies with larger stellar masses, a larger fraction of
early-type and red galaxies, and a higher fraction of low SFR galaxies, if they
are located in superclusters of filament morphology. The peculiar velocities of
the main galaxies in groups from superclusters of filament morphology are
higher than in those of spider morphology. Groups with higher peculiar
velocities of their main galaxies in filament-type superclusters are located in
higher density environment than those with low peculiar velocities. There are
significant differences between galaxy populations of the individual richest
superclusters. Therefore both local (group) and global (supercluster)
environments and even supercluster morphology play an important role in the
formation and evolution of galaxies.Comment: Comments: 14 pages, 11 figures, accepted for publication in Astronomy
and Astrophysic
- …