38 research outputs found
Tankyrase inhibition sensitizes cells to CDK4 blockade
Tankyrase (TNKS) 1/2 are positive regulators of WNT signaling by controlling the activity of the ss-catenin destruction complex. TNKS inhibitors provide an opportunity to suppress hyperactive WNT signaling in tumors, however, they have shown limited anti-proliferative activity as a monotherapy in human cancer cell lines. Here we perform a kinome-focused CRISPR screen to identify potential effective drug combinations with TNKS inhibition. We show that the loss of CDK4, but not CDK6, synergizes with TNKS1/2 blockade to drive G1 cell cycle arrest and senescence. Through precise modelling of cancer-associated mutations using cytidine base editors, we show that this therapeutic approach is absolutely dependent on suppression of canonical WNT signaling by TNKS inhibitors and is effective in cells from multiple epithelial cancer types. Together, our results suggest that combined WNT and CDK4 inhibition might provide a potential therapeutic strategy for difficult-to-treat epithelial tumors
Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes - role of the redox-regulated transcription factor Nrf2
<p>Abstract</p> <p>Background</p> <p>Both resveratrol and vitamin C (ascorbic acid) are frequently used in complementary and alternative medicine. However, little is known about the underlying mechanisms for potential health benefits of resveratrol and its interactions with ascorbic acid.</p> <p>Methods</p> <p>The antioxidant enzymes heme oxygenase-1 and paraoxonase-1 were analysed for their mRNA and protein levels in HUH7 liver cells treated with 10 and 25 μmol/l resveratrol in the absence and presence of 100 and 1000 μmol/l ascorbic acid. Additionally the transactivation of the transcription factor Nrf2 and paraoxonase-1 were determined by reporter gene assays.</p> <p>Results</p> <p>Here, we demonstrate that resveratrol induces the antioxidant enzymes heme oxygenase-1 and paraoxonase-1 in cultured hepatocytes. Heme oxygenase-1 induction by resveratrol was accompanied by an increase in Nrf2 transactivation. Resveratrol mediated Nrf2 transactivation as well as heme oxygenase-1 induction were partly antagonized by 1000 μmol/l ascorbic acid.</p> <p>Conclusions</p> <p>Unlike heme oxygenase-1 (which is highly regulated by Nrf2) paraoxonase-1 (which exhibits fewer ARE/Nrf2 binding sites in its promoter) induction by resveratrol was not counteracted by ascorbic acid. Addition of resveratrol to the cell culture medium produced relatively low levels of hydrogen peroxide which may be a positive hormetic redox-signal for Nrf2 dependent gene expression thereby driving heme oxygenase-1 induction. However, high concentrations of ascorbic acid manifold increased hydrogen peroxide production in the cell culture medium which may be a stress signal thereby disrupting the Nrf2 signalling pathway.</p
Unique Interplay between Sugar and Lipid in Determining the Antigenic Potency of Bacterial Antigens for NKT Cells
Structural and biophysical studies reveal the induced-fit mechanism underlying the stringent specificity of invariant natural killer T cells for unique glycolipid antigens from the pathogen Streptococcus pneumoniae
A TFIID-SAGA Perturbation that Targets MYB and Suppresses Acute Myeloid Leukemia
Targeting of general coactivators is an emerging strategy to interfere with oncogenic transcription factors (TFs). However, coactivator perturbations often lead to pleiotropic effects by influencing numerous TFs. Here we identify TAF12, a subunit of TFIID and SAGA coactivator complexes, as a selective requirement for acute myeloid leukemia (AML) progression. We trace this dependency to a direct interaction between the TAF12/TAF4 histone-fold heterodimer and the transactivation domain of MYB, a TF with established roles in leukemogenesis. Ectopic expression of the TAF4 histone-fold fragment can efficiently squelch TAF12 in cells, suppress MYB, and regress AML in mice. Our study reveals a strategy for potent MYB inhibition in AML and highlights how an oncogenic TF can be selectively neutralized by targeting a general coactivator complex