76 research outputs found
Estimation of Spin-Spin Interaction by Weak Measurement Scheme
Precisely knowing an interaction Hamiltonian is crucial to realize quantum
information tasks, especially to experimentally demonstrate a quantum computer
and a quantum memory. We propose a scheme to experimentally evaluate the
spin-spin interaction for a two-qubit system by the weak measurement technique
initiated by Yakir Aharonov and his colleagues. Furthermore, we numerically
confirm our proposed scheme in a specific system of a nitrogen vacancy center
in diamond. This means that the weak measurement can also be taken as a
concrete example of the quantum process tomography.Comment: 4 pages, 1 table, 2 figures, to appear in Europhysics Letter
Weak measurement of photon polarization by back-action induced path interference
The essential feature of weak measurements on quantum systems is the
reduction of measurement back-action to negligible levels. To observe the
non-classical features of weak measurements, it is therefore more important to
avoid additional back-action errors than it is to avoid errors in the actual
measurement outcome. In this paper, it is shown how an optical weak measurement
of diagonal (PM) polarization can be realized by path interference between the
horizontal (H) and vertical (V) polarization components of the input beam. The
measurement strength can then be controlled by rotating the H and V
polarizations towards each other. This well-controlled operation effectively
generates the back-action without additional decoherence, while the visibility
of the interference between the two beams only limits the measurement
resolution. As the experimental results confirm, we can obtain extremely high
weak values, even at rather low visibilities. Our method therefore provides a
realization of weak measurements that is extremely robust against experimental
imperfections.Comment: 11 pages, 3 figure
- …