115 research outputs found

    Janzenella theia Bremer & Talamas (Platygastroidea, Janzenellidae): a new species from Baltic amber

    Get PDF
    A new species, Janzenella theia Bremer & Talamas, sp. nov., is described from Baltic amber, which is the second known species of the family Janzenellidae (Platygastroidea). Synchrotron scanning was performed to observe internal structures and external morphology that was occluded by turbidity in the amber matrix surrounding the specimen

    Asymmetric-coupled Ge/SiGe quantum wells for second harmonic generation at 7.1 THz in integrated waveguides: a theoretical study

    Get PDF
    We present a theoretical investigation of guided second harmonic generation at THz frequencies in SiGe waveguides embedding n-type Ge/SiGe asymmetric coupled quantum wells to engineer a giant second order nonlinear susceptibility. A characteristic of the chosen material system is the existence of large off-diagonal elements in the χ2 tensor, coupling optical modes with different polarization. To account for this effect, we generalize the coupled-mode theory, proposing a theoretical model suitable for concurrently resolving every second harmonic generation interaction among guide-sustained modes, regardless of which χ2 tensor elements it originates from. Furthermore, we exploit the presence of off-diagonal χ2 elements and the peculiarity of the SiGe material system to develop a simple and novel approach to achieve perfect phase matching without requiring any fabrication process. For a realistic design of the quantum heterostructure we estimate second order nonlinear susceptibility peak values of ∼7 and ∼1.4 × 105 pm/V for diagonal and off diagonal χ2 elements, respectively. Embedding such heterostructure in Ge-rich SiGe waveguides of thicknesses of the order of 10–15 μm leads to second harmonic generation efficiencies comprised between 0.2 and 2 %, depending on the choice of device parameters. As a case study, we focus on the technologically relevant frequency of 7.1 THz, yet the results we report may be extended to the whole 5–20 THz range

    Propagation of gamma rays and production of free electrons in air

    Full text link
    A new concept of remote detection of concealed radioactive materials has been recently proposed \cite{Gr.Nusin.2010}-\cite{NusinSprangle}. It is based on the breakdown in air at the focal point of a high-power beam of electromagnetic waves produced by a THz gyrotron. To initiate the avalanche breakdown, seed free electrons should be present in this focal region during the electromagnetic pulse. This paper is devoted to the analysis of production of free electrons by gamma rays leaking from radioactive materials. Within a hundred meters from the radiation source, the fluctuating free electrons appear with the rate that may exceed significantly the natural background ionization rate. During the gyrotron pulse of about 10 microsecond length, such electrons may seed the electric breakdown and create sufficiently dense plasma at the focal region to be detected as an unambiguous effect of the concealed radioactive material.Comment: 27 pages, 10 figure

    A morphological, biological and molecular approach reveals four cryptic species of Trissolcus Ashmead (Hymenoptera, Scelionidae), egg parasitoids of Pentatomidae (Hemiptera)

    Get PDF
    Accurate identification of parasitoids is crucial for biological control of the invasive brown marmorated stink bug, Halyomrpha halys (Stål). A recent work by Talamas et al. (2017) revised the Palearctic fauna of Trissolcus Ashmead, egg-parasitoids of stink bugs, and treated numerous species as junior synonyms of T. semistriatus (Nees von Esenbeck). In the present paper, we provide a detailed taxonomic history and treatment of T. semistriatus and the species treated as its synonyms by Talamas et al. (2017) based on examination of primary types, molecular analyses and mating experiments. Trissolcus semistriatus, T. belenus (Walker), T. colemani (Crawford), and T. manteroi (Kieffer) are here recognized as valid and a key to species is provided. The identification tools provided here will facilitate the use of Trissolcus wasps as biological control agents and as the subject of ecological studies

    Optical manipulation of the Rashba effect in germanium quantum wells

    Full text link
    The Rashba effect in Ge/Si0.15_{0.15}Ge0.85_{0.85} multiple quantum wells embedded in a p-i-n diode is studied through polarization and time-resolved photoluminescence. In addition to a sizeable redshift arising from the quantum-confined Stark effect, a threefold enhancement of the circular polarization degree of the direct transition is obtained by increasing the pump power over a 2kW/cm2^2 range. This marked variation reflects an efficient modulation of the spin population and is further supported by dedicated investigations of the indirect gap transition. This study demonstrates a viable strategy to engineer the spin-orbit Hamiltonian through contactless optical excitation and opens the way towards the electro-optical manipulation of spins in quantum devices based on group-IV heterostructures

    High-quality CMOS compatible n-type SiGe parabolic quantum wells for intersubband photonics at 2.5-5 THz

    Get PDF
    A parabolic potential that confines charge carriers along the growth direction of quantum wells semiconductor systems is characterized by a single resonance frequency, associated to intersubband transitions. Motivated by fascinating quantum optics applications leveraging on this property, we use the technologically relevant SiGe material system to design, grow, and characterize n-type doped parabolic quantum wells realized by continuously grading Ge-rich Si1-x Ge x alloys, deposited on silicon wafers. An extensive structural analysis highlights the capability of the ultra-high-vacuum chemical vapor deposition technique here used to precisely control the quadratic confining potential and the target doping profile. The absorption spectrum, measured by means of Fourier transform infrared spectroscopy, revealed a single peak with a full width at half maximum at low and room temperature of about 2 and 5 meV, respectively, associated to degenerate intersubband transitions. The energy of the absorption resonance scales with the inverse of the well width, covering the 2.5-5 THz spectral range, and is almost independent of temperature and doping, as predicted for a parabolic confining potential. On the basis of these results, we discuss the perspective observation of THz strong light-matter coupling in this silicon compatible material system, leveraging on intersubband transitions embedded in all-semiconductor microcavities

    Validity and reliability of a novel 3D scanner for assessment of the shape and volume of amputees’ residual limb models

    Get PDF
    Objective assessment methods to monitor residual limb volume following lower-limb amputation are required to enhance practitioner-led prosthetic fitting. Computer aided systems, including 3D scanners, present numerous advantages and the recent Artec Eva scanner, based on laser free technology, could potentially be an effective solution for monitoring residual limb volumes.The aim of this study was to assess the validity and reliability of the Artec Eva scanner (practical measurement) against a high precision laser 3D scanner (criterion measurement) for the determination of residual limb model shape and volume. Three observers completed three repeat assessments of ten residual limb models, using both the scanners. Validity of the Artec Eva scanner was assessed (mean percentage error <2%) and Bland-Altman statistics were adopted to assess the agreement between the two scanners. Intra and inter-rater reliability (repeatability coefficient <5%) of the Artec Eva scanner was calculated for measuring indices of residual limb model volume and shape (i.e. residual limb cross sectional areas and perimeters). Residual limb model volumes ranged from 885 to 4399 ml. Mean percentage error of the Artec Eva scanner (validity) was 1.4% of the criterion volumes. Correlation coefficients between the Artec Eva and the Romer determined variables were higher than 0.9. Volume intra-rater and inter-rater reliability coefficients were 0.5% and 0.7%, respectively. Shape percentage maximal error was 2% at the distal end of the residual limb, with intra-rater reliability coefficients presenting the lowest errors (0.2%), both for cross sectional areas and perimeters of the residual limb models.The Artec Eva scanner is a valid and reliable method for assessing residual limb model shapes and volumes. While the method needs to be tested on human residual limbs and the results compared with the current system used in clinical practice, it has the potential to quantify shape and volume fluctuations with greater resolution
    • …
    corecore