115 research outputs found
Janzenella theia Bremer & Talamas (Platygastroidea, Janzenellidae): a new species from Baltic amber
A new species, Janzenella theia Bremer & Talamas, sp. nov., is described from Baltic amber, which is the second known species of the family Janzenellidae (Platygastroidea). Synchrotron scanning was performed to observe internal structures and external morphology that was occluded by turbidity in the amber matrix surrounding the specimen
Asymmetric-coupled Ge/SiGe quantum wells for second harmonic generation at 7.1 THz in integrated waveguides: a theoretical study
We present a theoretical investigation of guided second harmonic generation at THz frequencies in SiGe waveguides embedding n-type Ge/SiGe asymmetric coupled quantum wells to engineer a giant second order nonlinear susceptibility. A characteristic of the chosen material system is the existence of large off-diagonal elements in the χ2 tensor, coupling optical modes with different polarization. To account for this effect, we generalize the coupled-mode theory, proposing a theoretical model suitable for concurrently resolving every second harmonic generation interaction among guide-sustained modes, regardless of which χ2 tensor elements it originates from. Furthermore, we exploit the presence of off-diagonal χ2 elements and the peculiarity of the SiGe material system to develop a simple and novel approach to achieve perfect phase matching without requiring any fabrication process. For a realistic design of the quantum heterostructure we estimate second order nonlinear susceptibility peak values of ∼7 and ∼1.4 × 105 pm/V for diagonal and off diagonal χ2 elements, respectively. Embedding such heterostructure in Ge-rich SiGe waveguides of thicknesses of the order of 10–15 μm leads to second harmonic generation efficiencies comprised between 0.2 and 2 %, depending on the choice of device parameters. As a case study, we focus on the technologically relevant frequency of 7.1 THz, yet the results we report may be extended to the whole 5–20 THz range
Propagation of gamma rays and production of free electrons in air
A new concept of remote detection of concealed radioactive materials has been
recently proposed \cite{Gr.Nusin.2010}-\cite{NusinSprangle}. It is based on the
breakdown in air at the focal point of a high-power beam of electromagnetic
waves produced by a THz gyrotron. To initiate the avalanche breakdown, seed
free electrons should be present in this focal region during the
electromagnetic pulse. This paper is devoted to the analysis of production of
free electrons by gamma rays leaking from radioactive materials. Within a
hundred meters from the radiation source, the fluctuating free electrons appear
with the rate that may exceed significantly the natural background ionization
rate. During the gyrotron pulse of about 10 microsecond length, such electrons
may seed the electric breakdown and create sufficiently dense plasma at the
focal region to be detected as an unambiguous effect of the concealed
radioactive material.Comment: 27 pages, 10 figure
A morphological, biological and molecular approach reveals four cryptic species of Trissolcus Ashmead (Hymenoptera, Scelionidae), egg parasitoids of Pentatomidae (Hemiptera)
Accurate identification of parasitoids is crucial for biological control of the invasive brown marmorated stink bug, Halyomrpha halys (Stål). A recent work by Talamas et al. (2017) revised the Palearctic fauna of Trissolcus Ashmead, egg-parasitoids of stink bugs, and treated numerous species as junior synonyms of T. semistriatus (Nees von Esenbeck). In the present paper, we provide a detailed taxonomic history and treatment of T. semistriatus and the species treated as its synonyms by Talamas et al. (2017) based on examination of primary types, molecular analyses and mating experiments. Trissolcus semistriatus, T. belenus (Walker), T. colemani (Crawford), and T. manteroi (Kieffer) are here recognized as valid and a key to species is provided. The identification tools provided here will facilitate the use of Trissolcus wasps as biological control agents and as the subject of ecological studies
Optical manipulation of the Rashba effect in germanium quantum wells
The Rashba effect in Ge/SiGe multiple quantum wells
embedded in a p-i-n diode is studied through polarization and time-resolved
photoluminescence. In addition to a sizeable redshift arising from the
quantum-confined Stark effect, a threefold enhancement of the circular
polarization degree of the direct transition is obtained by increasing the pump
power over a 2kW/cm range. This marked variation reflects an efficient
modulation of the spin population and is further supported by dedicated
investigations of the indirect gap transition. This study demonstrates a viable
strategy to engineer the spin-orbit Hamiltonian through contactless optical
excitation and opens the way towards the electro-optical manipulation of spins
in quantum devices based on group-IV heterostructures
High-quality CMOS compatible n-type SiGe parabolic quantum wells for intersubband photonics at 2.5-5 THz
A parabolic potential that confines charge carriers along the growth direction of quantum wells semiconductor systems is characterized by a single resonance frequency, associated to intersubband transitions. Motivated by fascinating quantum optics applications leveraging on this property, we use the technologically relevant SiGe material system to design, grow, and characterize n-type doped parabolic quantum wells realized by continuously grading Ge-rich Si1-x Ge x alloys, deposited on silicon wafers. An extensive structural analysis highlights the capability of the ultra-high-vacuum chemical vapor deposition technique here used to precisely control the quadratic confining potential and the target doping profile. The absorption spectrum, measured by means of Fourier transform infrared spectroscopy, revealed a single peak with a full width at half maximum at low and room temperature of about 2 and 5 meV, respectively, associated to degenerate intersubband transitions. The energy of the absorption resonance scales with the inverse of the well width, covering the 2.5-5 THz spectral range, and is almost independent of temperature and doping, as predicted for a parabolic confining potential. On the basis of these results, we discuss the perspective observation of THz strong light-matter coupling in this silicon compatible material system, leveraging on intersubband transitions embedded in all-semiconductor microcavities
Validity and reliability of a novel 3D scanner for assessment of the shape and volume of amputees’ residual limb models
Objective assessment methods to monitor residual limb volume following lower-limb amputation are required to enhance practitioner-led prosthetic fitting. Computer aided systems, including 3D scanners, present numerous advantages and the recent Artec Eva scanner, based on laser free technology, could potentially be an effective solution for monitoring residual limb volumes.The aim of this study was to assess the validity and reliability of the Artec Eva scanner (practical measurement) against a high precision laser 3D scanner (criterion measurement) for the determination of residual limb model shape and volume. Three observers completed three repeat assessments of ten residual limb models, using both the scanners. Validity of the Artec Eva scanner was assessed (mean percentage error <2%) and Bland-Altman statistics were adopted to assess the agreement between the two scanners. Intra and inter-rater reliability (repeatability coefficient <5%) of the Artec Eva scanner was calculated for measuring indices of residual limb model volume and shape (i.e. residual limb cross sectional areas and perimeters). Residual limb model volumes ranged from 885 to 4399 ml. Mean percentage error of the Artec Eva scanner (validity) was 1.4% of the criterion volumes. Correlation coefficients between the Artec Eva and the Romer determined variables were higher than 0.9. Volume intra-rater and inter-rater reliability coefficients were 0.5% and 0.7%, respectively. Shape percentage maximal error was 2% at the distal end of the residual limb, with intra-rater reliability coefficients presenting the lowest errors (0.2%), both for cross sectional areas and perimeters of the residual limb models.The Artec Eva scanner is a valid and reliable method for assessing residual limb model shapes and volumes. While the method needs to be tested on human residual limbs and the results compared with the current system used in clinical practice, it has the potential to quantify shape and volume fluctuations with greater resolution
Recommended from our members
Spheromak Buildup in SSPX using a Modular Capacitor Bank
The Sustained Spheromak Physics Experiment (SSPX) [1] was designed to address both magnetic field generation and confinement. The SSPX produces 1.5-3.5msec, spheromak plasmas with a 0.33m major radius and a minor radius of {approx}0.23m. DC coaxial helicity injection is used to build and sustain the spheromak plasma within the flux conserver. Optimal operation is obtained by flattening the profile of {lambda} = {mu}{sub 0}j/B, consistent with reducing the drive for tearing and other MHD modes, and matching of edge current and bias flux to minimize |{delta}B/B|{sub rms}. With these optimizations, spheromak plasmas with central T{sub e} >350eV and {beta}{sub e} {approx} 5% with toroidal fields of 0.6T [3] have been obtained. If a favorable balance between current drive efficiency and energy confinement can be shown, the spheromak has the potential to yield an attractive magnetic fusion concept [4]. The original SSPX power system consists of two lumped-circuit capacitor banks with fixed circuit parameters. This power system is used to produce an initial fast formation current pulse (10kV, 0.5MJ formation bank), followed by a lower current, 3.5ms flattop sustainment pulse (5kV, 1.5MJ sustainment bank). Experimental results indicate that a variety of injected current pulses, such as a longer sustainment flattop [5], higher and longer fast formation [6], and multiple current pulses [7], might further our understanding of magnetic field generation. Although the formation bank can be split into two independent banks capable of producing other injected current waveforms, the variety of current waveforms produced by this power system is limited. Thus, to extend the operating range of the SSPX, a new pulsed-power system has been designed and partially constructed. In this paper, we discuss the design of the programmable bank and present first results from using the bank to increase the magnetic field in SSPX
Recommended from our members
Measurements and Phenomenological Modeling of Magnetic FluxBuildup in Spheromak Plasmas
Internal magnetic field measurements and high-speed imaging at the Sustained Spheromak Physics Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, R. H. Bulmer, Nucl. Fusion 39, 863 (1999)] are used to study spheromak formation and field buildup. The measurements are analyzed in the context of a phenomenological model of magnetic helicity based on the topological constraint of minimum helicity in the open flux before reconnecting and linking closed flux. Two stages are analyzed: (1) the initial spheromak formation, i. e. when all flux surfaces are initially open and reconnect to form open and closed flux surfaces, and (2) the stepwise increase of closed flux when operating the gun on a new mode that can apply a train of high-current pulses to the plasma. In the first stage, large kinks in the open flux surfaces are observed in the high-speed images taken shortly after plasma breakdown, and coincide with large magnetic asymmetries recorded in a fixed insertable magnetic probe that spans the flux conserver radius. Closed flux (in the toroidal average sense) appears shortly after this. This stage is also investigated using resistive magnetohydrodynamic simulations. In the second stage, a time lag in response between open and closed flux surfaces after each current pulse is interpreted as the time for the open flux to build helicity, before transferring it through reconnection to the closed flux. Large asymmetries are seen during these events, which then relax to a slowly decaying spheromak before the next pulse
Recommended from our members
The Search for Reconnection and Helicity During Formation of a Bounded Spheromak
Recent results from investigations using insertable magnetic probes at the Sustained Spheromak Physics Experiment (SSPX) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)] are presented. Experiments were carried out during pre-programmed, constant amplitude coaxial gun current pulses, where magnetic field increases stepwise with every pulse, but eventually saturates. Magnetic traces from the probe, which is electrically isolated from the plasma and spans the flux conserver radius, indicate there is a time lag at every pulse between the response to the current rise in the open flux surfaces (intercepting the electrodes) and the closed flux surfaces (linked around the open ones). This is interpreted as the time to buildup enough helicity in the open flux surfaces before reconnecting and merging with the closed ones. Future experimental and diagnostic plans to directly estimate the helicity in the open flux surfaces and measure reconnection are briefly discussed
- …