1,010 research outputs found
Quasar accretion disk sizes from continuum reverberation mapping in the DES standard-star fields
Measurements of the physical properties of accretion disks in active galactic
nuclei are important for better understanding the growth and evolution of
supermassive black holes. We present the accretion disk sizes of 22 quasars
from continuum reverberation mapping with data from the Dark Energy Survey
(DES) standard star fields and the supernova C fields. We construct continuum
lightcurves with the \textit{griz} photometry that span five seasons of DES
observations. These data sample the time variability of the quasars with a
cadence as short as one day, which corresponds to a rest frame cadence that is
a factor of a few higher than most previous work. We derive time lags between
bands with both JAVELIN and the interpolated cross-correlation function method,
and fit for accretion disk sizes using the JAVELIN Thin Disk model. These new
measurements include disks around black holes with masses as small as
, which have equivalent sizes at 2500\AA \, as small as
light days in the rest frame. We find that most objects have
accretion disk sizes consistent with the prediction of the standard thin disk
model when we take disk variability into account. We have also simulated the
expected yield of accretion disk measurements under various observational
scenarios for the Large Synoptic Survey Telescope Deep Drilling Fields. We find
that the number of disk measurements would increase significantly if the
default cadence is changed from three days to two days or one day.Comment: 33 pages, 24 figure
Astrometric calibration and performance of the Dark Energy Camera
We characterize the ability of the Dark Energy Camera (DECam) to perform
relative astrometry across its 500~Mpix, 3 deg^2 science field of view, and
across 4 years of operation. This is done using internal comparisons of ~4x10^7
measurements of high-S/N stellar images obtained in repeat visits to fields of
moderate stellar density, with the telescope dithered to move the sources
around the array. An empirical astrometric model includes terms for: optical
distortions; stray electric fields in the CCD detectors; chromatic terms in the
instrumental and atmospheric optics; shifts in CCD relative positions of up to
~10 um when the DECam temperature cycles; and low-order distortions to each
exposure from changes in atmospheric refraction and telescope alignment. Errors
in this astrometric model are dominated by stochastic variations with typical
amplitudes of 10-30 mas (in a 30 s exposure) and 5-10 arcmin coherence length,
plausibly attributed to Kolmogorov-spectrum atmospheric turbulence. The size of
these atmospheric distortions is not closely related to the seeing. Given an
astrometric reference catalog at density ~0.7 arcmin^{-2}, e.g. from Gaia, the
typical atmospheric distortions can be interpolated to 7 mas RMS accuracy (for
30 s exposures) with 1 arcmin coherence length for residual errors. Remaining
detectable error contributors are 2-4 mas RMS from unmodelled stray electric
fields in the devices, and another 2-4 mas RMS from focal plane shifts between
camera thermal cycles. Thus the astrometric solution for a single DECam
exposure is accurate to 3-6 mas (0.02 pixels, or 300 nm) on the focal plane,
plus the stochastic atmospheric distortion.Comment: Submitted to PAS
Brown dwarf census with the Dark Energy Survey year 3 data and the thin disc scale height of early L types
27 pages, 18 figuresIn this paper we present a catalogue of 11 745 brown dwarfs with spectral types ranging from L0 to T9, photometrically classified using data from the Dark Energy Survey (DES) year 3 release matched to the Vista Hemisphere Survey (VHS) DR3 and Wide-field Infrared Survey Explorer (WISE) data, covering ≈2400 deg2 up to iAB = 22. The classification method follows the same phototype method previously applied to SDSS-UKIDSS-WISE data. The most significant difference comes from the use of DES data instead of SDSS, which allow us to classify almost an order of magnitude more brown dwarfs than any previous search and reaching distances beyond 400 pc for the earliest types. Next, we also present and validate the GalmodBD simulation, which produces brown dwarf number counts as a function of structural parameters with realistic photometric properties of a given survey. We use this simulation to estimate the completeness and purity of our photometric LT catalogue down to iAB = 22, as well as to compare to the observed number of LT types. We put constraints on the thin disc scale height for the early L (L0–L3) population to be around 450 pc, in agreement with previous findings. For completeness, we also publish in a separate table a catalogue of 20 863 M dwarfs that passed our colour cut with spectral types greater than M6. Both the LT and the late M catalogues are found at DES release page https://des.ncsa.illinois.edu/releases/other/y3-mlt.Peer reviewedFinal Published versio
Semliki Forest virus induced, immune mediated demyelination: the effect of irradiation
International audienceThe Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey (DES). The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 mag fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = -38.14° ± 0.08° (near side in the north) and a position angle for the line of nodes of θ0 = 129.51° ± 0.17°. We find that stars younger than ∼4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R>4 Gyr = 1.41 ± 0.01 kpc, while the younger population has R = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of Rt = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is {∼eq } 24^{+9}_{-6} times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fitting LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. Our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component
Chemical Abundance Analysis of Tucana III, the Second -process Enhanced Ultra-Faint Dwarf Galaxy
We present a chemical abundance analysis of four additional confirmed member
stars of Tucana III, a Milky Way satellite galaxy candidate in the process of
being tidally disrupted as it is accreted by the Galaxy. Two of these stars are
centrally located in the core of the galaxy while the other two stars are
located in the eastern and western tidal tails. The four stars have chemical
abundance patterns consistent with the one previously studied star in Tucana
III: they are moderately enhanced in -process elements, i.e. they have
0.4 dex. The non-neutron-capture elements generally
follow trends seen in other dwarf galaxies, including a metallicity range of
0.44 dex and the expected trend in -elements, i.e., the lower
metallicity stars have higher Ca and Ti abundance. Overall, the chemical
abundance patterns of these stars suggest that Tucana III was an ultra-faint
dwarf galaxy, and not a globular cluster, before being tidally disturbed. As is
the case for the one other galaxy dominated by -process enhanced stars,
Reticulum II, Tucana III's stellar chemical abundances are consistent with
pollution from ejecta produced by a binary neutron star merger, although a
different -process element or dilution gas mass is required to explain the
abundances in these two galaxies if a neutron star merger is the sole source of
-process enhancement.Comment: 18 pages, 10 figures; accepted by Ap
Recommended from our members
H0LiCOW X: Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI2033-4723
Galaxies and galaxy groups located along the line of sight towards
gravitationally lensed quasars produce high-order perturbations of the
gravitational potential at the lens position. When these perturbation are too
large, they can induce a systematic error on of a few-percent if the lens
system is used for cosmological inference and the perturbers are not explicitly
accounted for in the lens model. In this work, we present a detailed
characterization of the environment of the lens system WFI2033-4723 (, = 0.6575), one of the core targets of the H0LICOW
project for which we present cosmological inferences in a companion paper (Rusu
et al. 2019). We use the Gemini and ESO-Very Large telescopes to measure the
spectroscopic redshifts of the brightest galaxies towards the lens, and use the
ESO-MUSE integral field spectrograph to measure the velocity-dispersion of the
lens ( km/s) and of several nearby
galaxies. In addition, we measure photometric redshifts and stellar masses of
all galaxies down to mag, mainly based on Dark Energy Survey imaging
(DR1). Our new catalog, complemented with literature data, more than doubles
the number of known galaxy spectroscopic redshifts in the direct vicinity of
the lens, expanding to 116 (64) the number of spectroscopic redshifts for
galaxies separated by less than 3 arcmin (2 arcmin) from the lens. Using the
flexion-shift as a measure of the amplitude of the gravitational perturbation,
we identify 2 galaxy groups and 3 galaxies that require specific attention in
the lens models. The ESO MUSE data enable us to measure the
velocity-dispersions of three of these galaxies. These results are essential
for the cosmological inference analysis presented in Rusu et al. (2019).Comment: Matches the version accepted for publication by MNRAS. Note that this
paper previously appeared as H0LICOW X
- …