639 research outputs found

    Electrons, ions and dust in a radio-frequency discharge

    Get PDF

    The ICP : fundamental properties

    Get PDF

    MoS2 nanoparticle formation in a low pressure environment

    Get PDF
    Formation of MoS2 nanoparticles at pressures between 0.5 and 10 Torr has been studied. Two different chemistries for the particle nucleation are compared: one based on MoCl5 and H2S, and the other based on MoCl5 and S. In both cases particle formation has been studied in a thermal oven and in a radio-frequency discharge. Typically, the reaction rates at low pressures are too low for an efficient thermal particle production. At pressures below 10 Torr no particle production in the oven is achieved in H2S chemistry. In the more reactive chemistry based on sulfur, the optimal conditions for thermal particle growth are found at 10 Torr and low gas flows, using excess of hydrogen. In the radio-frequency discharge, nanoparticles are readily formed in both chemistries at 0.5 Torr and can be detected in situ by laser light scattering. In the H2S chemistry particles smaller than 100 nm diameter have been synthesized, the sulfur chemistry yields somewhat larger grains. Both in thermal and plasma-enhanced particle syntheses, using excess of hydrogen is beneficial for the stability and purity of the particles

    Voids in dust clouds suspended in the plasma sheath

    Get PDF
    Voids in dusty plasma are a new phenomenon, which is still not understood. In this work we have studied experimentally for first time voids in the sheath of a radio-frequency (RF) dusty plasma. Injecting big dust particles into the plasma, we form a dust cloud in the sheath. The behaviour of the cloud as a function of RF power and gas pressure is investigated using video imaging. Both dependencies show a threshold for the void formation. This threshold is characterised by a sudden decrease in the inter-particle distance, while in the non-void mode the distance increases with power and pressure. We have performed Langmuir probe measurements of the floating potential in the bulk plasma close to the sheath in order to estimate the form of the potential well trapping the dust grains

    The chemistry of a CCl2F2 radio frequency discharge

    Get PDF
    A systematic study of the chemistry of stable molecules and radicals in a low pressure CCl2F2 radio frequency discharge for dry Si etching has been performed. Various particle densities have been measured and modeled. The electron density, needed as an input parameter to model the CCl2F2 dissociation, is measured by a microwave cavity method. The densities of stable molecules, like CClF3, CF4, 1,2-C2Cl2F4 and the etch product SiF4, are measured by Fourier transform absorption spectroscopy. The density of the CF2 radical is measured by means of absorption spectroscopy with a tunable diode laser. Its density is in the order of 1019 m-3. All density measurements are presented as a function of various plasma parameters. Moreover, optical emission intensities of Cl and F have been recorded as a function of plasma parameters. It appears that the feed gas (CCl2F2) is substantially dissociated (about 70%–90%) in the discharge. Based on the obtained data the dissociation rates of several molecules have been estimated. The measured total dissociation rate of CCl2F2 is 8×10-15 m3¿s-1. For this molecule the dissociation rate is substantially higher than the dissociative attachment rate (10-15 m3¿s-1). The dissociation rate for CClF3 is 2×10-15 m3¿s-1 and for CF4 about 3×10-16 m3¿s-1. The total dissociation rate of C2Cl2F4 is higher than 5 ×10-15 m3¿s-1, of which 2.5±0.5 × 10-15 m3¿s-1 is due to dissociative attachment. Furthermore it has been found that the presence of a silicon wafer strongly affects the plasma chemistry. Optical emission measurements show that the densities of halogen radicals are significantly depleted in presence of Si. Moreover, the densities of several halocarbon molecules display a negative correlation with the density of the etch product SiF4. © 1995 American Vacuum Societ

    Kinetics of an argon inductively coupled plasma

    Get PDF

    Energy influx from an rf plasma to a substrate during plasma processing

    Get PDF
    The energy influx delivered by an rf plasma to a metal substrate has been studied by a calorimetric method with a thermal probe. By changing the substrate voltage, the influence of the kinetic energy of the charge carriers to the thermal power could be determined. The measured energy influx for an argon plasma can be explained mainly by ions, electrons, and their recombination. In the case of an oxygen plasma, where the energy influx is under comparable conditions about 50% higher, also other transfer mechanisms such as surface-aided atom association and relaxation of rovibrational states have to be taken into consideration
    corecore