476 research outputs found

    Dynamics of Viscoplastic Deformation in Amorphous Solids

    Full text link
    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these new state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition, and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations.Comment: 16 pages, 9 figure

    Boundary lubrication with a glassy interface

    Full text link
    Recently introduced constitutive equations for the rheology of dense, disordered materials are investigated in the context of stick-slip experiments in boundary lubrication. The model is based on a generalization of the shear transformation zone (STZ) theory, in which plastic deformation is represented by a population of mesoscopic regions which may undergo non affine deformations in response to stress. The generalization we study phenomenologically incorporates the effects of aging and glassy relaxation. Under experimental conditions associated with typical transitions from stick-slip to steady sliding and stop start tests, these effects can be dominant, although the full STZ description is necessary to account for more complex, chaotic transitions

    A novel, simple, and sensitive colorimetric method to determine aromatic amino acid aminotransferase activity using the Salkowski reagent

    Get PDF
    This study describes the development of a new colorimetric assay to determine aromatic amino acid aminotransferase (ArAT) activity. The assay is based on the transamination of l-tryptophan in the presence of 2-oxoglutarate, which yields indole-3-pyruvate (IPyA). The amount of IPyA formed was quantified by reaction with the Salkowski reagent. Optimized assay conditions are presented for ArAT isozymes isolated from Pseudomonas putida. For comparative purposes, ArAT activity was also determined by high-performance liquid chromatography. ArAT activity staining in polyacrylamide gels with the Salkowski reagent is also presented

    Nucleation and Bulk Crystallization in Binary Phase Field Theory

    Full text link
    We present a phase field theory for binary crystal nucleation. In the one-component limit, quantitative agreement is achieved with computer simulations (Lennard-Jones system) and experiments (ice-water system) using model parameters evaluated from the free energy and thickness of the interface. The critical undercoolings predicted for Cu-Ni alloys accord with the measurements, and indicate homogeneous nucleation. The Kolmogorov exponents deduced for dendritic solidification and for "soft-impingement" of particles via diffusion fields are consistent with experiment.Comment: 4 pages, 4 figures, accepted to PR

    Sheared Solid Materials

    Full text link
    We present a time-dependent Ginzburg-Landau model of nonlinear elasticity in solid materials. We assume that the elastic energy density is a periodic function of the shear and tetragonal strains owing to the underlying lattice structure. With this new ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic flow high-density dislocations emerge at large strains to accumulate and grow into shear bands where the strains are localized. In addition to the elastic displacement, we also introduce the local free volume {\it m}. For very small mm the defect structures are metastable and long-lived where the dislocations are pinned by the Peierls potential barrier. However, if the shear modulus decreases with increasing {\it m}, accumulation of {\it m} around dislocation cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). As another application of our scheme, we also study dislocation formation in two-phase alloys (coherency loss) under shear strains, where dislocations glide preferentially in the softer regions and are trapped at the interfaces.Comment: 16pages, 11figure
    • …
    corecore