353 research outputs found

    Phase diagram of 2D array of mesoscopic granules

    Full text link
    A lattice boson model is used to study ordering phenomena in regular 2D array of superconductive mesoscopic granules, Josephson junctions or pores filled with a superfluid helium. Phase diagram of the system, when quantum fluctuations of both the phase and local superfluid density are essential, is analyzed both analytically and by quantum Monte Carlo technique. For the system of strongly interacting bosons it is found that as the boson density n0n_0 is increased the boundary of ordered superconducting state shifts to {\it lower temperatures} and at n0>8n_0 > 8 approaches its limiting position corresponding to negligible relative fluctuations of moduli of the order parameter (as in an array of "macroscopic" granules). In the region of weak quantum fluctuations of phases mesoscopic phenomena manifest themselves up to n010n_0 \sim 10. The mean field theory and functional integral 1/n01/n_0 - expansion results are shown to agree with that of quantum Monte Carlo calculations of the boson Hubbard model and its quasiclassical limit, the quantum XY model.Comment: 7 pages, 5 Postscript figure

    Phase and Charge reentrant phase transitions in two capacitively coupled Josephson arrays with ultra-small junction

    Full text link
    We have studied the phase diagram of two capacitively coupled Josephson junction arrays with charging energy, EcE_c, and Josephson coupling energy, EJE_J. Our results are obtained using a path integral Quantum Monte Carlo algorithm. The parameter that quantifies the quantum fluctuations in the i-th array is defined by αiEciEJi\alpha_i\equiv \frac{E_{{c}_i}}{E_{J_i}}. Depending on the value of αi\alpha_i, each independent array may be in the semiclassical or in the quantum regime: We find that thermal fluctuations are important when α1.5\alpha \lesssim 1.5 and the quantum fluctuations dominate when 2.0α2.0 \lesssim \alpha . We have extensively studied the interplay between vortex and charge dominated individual array phases. The two arrays are coupled via the capacitance CinterC_{{\rm inter}} at each site of the lattices. We find a {\it reentrant transition} in Υ(T,α)\Upsilon(T,\alpha), at low temperatures, when one of the arrays is in the semiclassical limit (i.e. α1=0.5\alpha_{1}=0.5 ) and the quantum array has 2.0α22.52.0 \leq\alpha_{2} \leq 2.5, for the values considered for the interlayer capacitance. In addition, when 3.0α2<4.03.0 \leq \alpha_{2} < 4.0, and for all the inter-layer couplings considered above, a {\it novel} reentrant phase transition occurs in the charge degrees of freedom, i.e. there is a reentrant insulating-conducting transition at low temperatures. We obtain the corresponding phase diagrams and found some features that resemble those seen in experiments with 2D JJA.Comment: 25 Latex pages including 8 encapsulated poscript figures. Accepted for publication in Phys. Rev B (Nov. 2004 Issue

    Two-dimensional macroscopic quantum dynamics in YBCO Josephson junctions

    Full text link
    We theoretically study classical thermal activation (TA) and macroscopic quantum tunneling (MQT) for a YBCO Josephson junction coupled with an LC circuit. The TA and MQT escape rate are calculated by taking into account the two-dimensional nature of the classical and quantum phase dynamics. We find that the MQT escape rate is largely suppressed by the coupling to the LC circuit. On the other hand, this coupling leads to the slight reduction of the TA escape rate. These results are relevant for the interpretation of a recent experiment on the MQT and TA phenomena in YBCO bi-epitaxial Josephson junctions.Comment: 9 pages, 2 figure

    Quantum effects in a superconducting glass model

    Full text link
    We study disordered Josephson junctions arrays with long-range interaction and charging effects. The model consists of two orthogonal sets of positionally disordered NN parallel filaments (or wires) Josephson coupled at each crossing and in the presence of a homogeneous and transverse magnetic field. The large charging energy (resulting from small self-capacitance of the ultrathin wires) introduces important quantum fluctuations of the superconducting phase within each filament. Positional disorder and magnetic field frustration induce spin-glass like ground state, characterized by not having long-range order of the phases. The stability of this phase is destroyed for sufficiently large charging energy. We have evaluated the temperature vs charging energy phase diagram by extending the methods developed in the theory of infinite-range spin glasses, in the limit of large magnetic field. The phase diagram in the different temperature regimes is evaluated by using variety of methods, to wit: semiclassical WKB and variational methods, Rayleigh-Schr\"{o}dinger perturbation theory and pseudospin effective Hamiltonians. Possible experimental consequences of these results are briefly discussed.Comment: 17 pages REVTEX. Two Postscript figures can be obtained from the authors. To appear in PR

    Does cytomegalovirus infection contribute to socioeconomic disparities in all-cause mortality?

    Get PDF
    The social patterning of cytomegalovirus (CMV) and its implication in aging suggest that the virus may partially contribute to socioeconomic disparities in mortality. We used Cox regression and inverse odds ratio weighting to quantify the proportion of the association between socioeconomic status (SES) and all-cause mortality that was attributable to mediation by CMV seropositivity. Data were from the National Health and Nutrition Examination Survey (NHANES) III (1988–1994), with mortality follow-up through December 2011. SES was assessed as household income (income-to-poverty ratio ≤1.30; >1.30 to ≤1.85; >1.85 to ≤3.50; >3.50) and education (high school). We found strong associations between low SES and increased mortality: hazard ratio (HR) 1.80; 95% confidence interval (CI): 1.57, 2.06 comparing the lowest versus highest income groups and HR 1.29; 95% CI: 1.13, 1.48 comparing high school education. 65% of individuals were CMV seropositive, accounting for 6–15% of the SES-mortality associations. Age modified the associations between SES, CMV, and mortality, with CMV more strongly associated with mortality in older individuals. Our findings suggest that cytomegalovirus may partially contribute to persistent socioeconomic disparities in mortality, particularly among older individuals

    Quantum critical point and scaling in a layered array of ultrasmall Josephson junctions

    Full text link
    We have studied a quantum Hamiltonian that models an array of ultrasmall Josephson junctions with short range Josephson couplings, EJE_J, and charging energies, ECE_C, due to the small capacitance of the junctions. We derive a new effective quantum spherical model for the array Hamiltonian. As an application we start by approximating the capacitance matrix by its self-capacitive limit and in the presence of an external uniform background of charges, qxq_x. In this limit we obtain the zero-temperature superconductor-insulator phase diagram, EJcrit(EC,qx)E_J^{\rm crit}(E_C,q_x), that improves upon previous theoretical results that used a mean field theory approximation. Next we obtain a closed-form expression for the conductivity of a square array, and derive a universal scaling relation valid about the zero--temperature quantum critical point. In the latter regime the energy scale is determined by temperature and we establish universal scaling forms for the frequency dependence of the conductivity.Comment: 18 pages, four Postscript figures, REVTEX style, Physical Review B 1999. We have added one important reference to this version of the pape

    Mean Field Theory of Josephson Junction Arrays with Charge Frustration

    Full text link
    Using the path integral approach, we provide an explicit derivation of the equation for the phase boundary for quantum Josephson junction arrays with offset charges and non-diagonal capacitance matrix. For the model with nearest neighbor capacitance matrix and uniform offset charge q/2e=1/2q/2e=1/2, we determine, in the low critical temperature expansion, the most relevant contributions to the equation for the phase boundary. We explicitly construct the charge distributions on the lattice corresponding to the lowest energies. We find a reentrant behavior even with a short ranged interaction. A merit of the path integral approach is that it allows to provide an elegant derivation of the Ginzburg-Landau free energy for a general model with charge frustration and non-diagonal capacitance matrix. The partition function factorizes as a product of a topological term, depending only on a set of integers, and a non-topological one, which is explicitly evaluated.Comment: LaTex, 24 pages, 8 figure

    Inertial Mass of a Vortex in Cuprate Superconductors

    Get PDF
    We present here a calculation of the inertial mass of a moving vortex in cuprate superconductors. This is a poorly known basic quantity of obvious interest in vortex dynamics. The motion of a vortex causes a dipolar density distortion and an associated electric field which is screened. The energy cost of the density distortion as well as the related screened electric field contribute to the vortex mass, which is small because of efficient screening. As a preliminary, we present a discussion and calculation of the vortex mass using a microscopically derivable phase-only action functional for the far region which shows that the contribution from the far region is negligible, and that most of it arises from the (small) core region of the vortex. A calculation based on a phenomenological Ginzburg-Landau functional is performed in the core region. Unfortunately such a calculation is unreliable, the reasons for it are discussed. A credible calculation of the vortex mass thus requires a fully microscopic, non-coarse grained theory. This is developed, and results are presented for a s-wave BCS like gap, with parameters appropriate to the cuprates. The mass, about 0.5 mem_e per layer, for magnetic field along the cc axis, arises from deformation of quasiparticle states bound in the core, and screening effects mentioned above. We discuss earlier results, possible extensions to d-wave symmetry, and observability of effects dependent on the inertial mass.Comment: 27 pages, Latex, 3 figures available on request, to appear in Physical Review
    corecore