296 research outputs found

    A Study of Alā€“Mn Transition Edge Sensor Engineering for Stability

    Get PDF
    The stability of Alā€“Mn transition edge sensor (TES) bolometers is studied as we vary the engineered TES transition, heat capacity, and/or coupling between the heat capacity and TES. We present thermal structure measurements of each of the 39 designs tested. The data is accurately fit by a two-body bolometer model, which allows us to extract the basic TES parameters that affect device stability. We conclude that parameters affecting device stability can be engineered for optimal device operation, and present the model parameters extracted for the different TES designs

    Effect of Partial Cladding Pattern of Aluminum 7075 T651 on Corrosion and Mechanical Properties

    Get PDF
    The corrosion resistance of aluminum 7075 T651 in full clad (Alclad), partial clad, and bare (unclad) forms was compared after 300 hours of corrosion exposure in an acidic salt spray cabinet test at 36Ā°C. After corrosion exposure, severe to moderate exfoliation corrosion was observed on the unprotected medium sized test panel, light general corrosion was observed on the partially clad panel, and patches of corrosion not penetrating the clad layer were observed on the fully clad panel. After corrosion tests, the tensile strength of partially clad, fully clad, and unprotected panels decreased by 3.4%, 4.0%, and 5.3%, respectively

    Performance and on-sky optical characterization of the SPTpol instrument

    Get PDF
    In January 2012, the 10m South Pole Telescope (SPT) was equipped with a polarization-sensitive camera, SPTpol, in order to measure the polarization anisotropy of the cosmic microwave background (CMB). Measurements of the polarization of the CMB at small angular scales (~several arcminutes) can detect the gravitational lensing of the CMB by large scale structure and constrain the sum of the neutrino masses. At large angular scales (~few degrees) CMB measurements can constrain the energy scale of Inflation. SPTpol is a two-color mm-wave camera that consists of 180 polarimeters at 90 GHz and 588 polarimeters at 150 GHz, with each polarimeter consisting of a dual transition edge sensor (TES) bolometers. The full complement of 150 GHz detectors consists of 7 arrays of 84 ortho-mode transducers (OMTs) that are stripline coupled to two TES detectors per OMT, developed by the TRUCE collaboration and fabricated at NIST. Each 90 GHz pixel consists of two antenna-coupled absorbers coupled to two TES detectors, developed with Argonne National Labs. The 1536 total detectors are read out with digital frequency-domain multiplexing (DfMUX). The SPTpol deployment represents the first on-sky tests of both of these detector technologies, and is one of the first deployed instruments using DfMUX readout technology. We present the details of the design, commissioning, deployment, on-sky optical characterization and detector performance of the complete SPTpol focal plane

    SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope

    Get PDF
    SPTpol is a dual-frequency polarization-sensitive camera that was deployed on the 10-meter South Pole Telescope in January 2012. SPTpol will measure the polarization anisotropy of the cosmic microwave background (CMB) on angular scales spanning an arcminute to several degrees. The polarization sensitivity of SPTpol will enable a detection of the CMB ā€œB-modeā€ polarization from the detection of the gravitational lensing of the CMB by large scale structure, and a detection or improved upper limit on a primordial signal due to inationary gravity waves. The two measurements can be used to constrain the sum of the neutrino masses and the energy scale of ination. These science goals can be achieved through the polarization sensitivity of the SPTpol camera and careful control of systematics. The SPTpol camera consists of 768 pixels, each containing two transition-edge sensor (TES) bolometers coupled to orthogonal polarizations, and a total of 1536 bolometers. The pixels are sensitive to light in one of two frequency bands centered at 90 and 150 GHz, with 180 pixels at 90 GHz and 588 pixels at 150 GHz. The SPTpol design has several features designed to control polarization systematics, including: singlemoded feedhorns with low cross-polarization, bolometer pairs well-matched to dfference atmospheric signals, an improved ground shield design based on far-sidelobe measurements of the SPT, and a small beam to reduce temperature to polarization leakage. We present an overview of the SPTpol instrument design, project status, and science projections

    South Pole Telescope Software Systems: Control, Monitoring, and Data Acquisition

    Get PDF
    We present the software system used to control and operate the South Pole Telescope. The South Pole Telescope is a 10-meter millimeter-wavelength telescope designed to measure anisotropies in the cosmic microwave background (CMB) at arcminute angular resolution. In the austral summer of 2011/12, the SPT was equipped with a new polarization-sensitive camera, which consists of 1536 transition-edge sensor bolometers. The bolometers are read out using 36 independent digital frequency multiplexing (DfMux) readout boards, each with its own embedded processors. These autonomous boards control and read out data from the focal plane with on-board software and firmware. An overall control software system running on a separate control computer controls the DfMux boards, the cryostat and all other aspects of telescope operation. This control software collects and monitors data in real-time, and stores the data to disk for transfer to the United States for analysis

    Design and characterization of 90 GHz feedhorn-coupled TES polarimeter pixels in the SPTPol camera

    Get PDF
    The SPTpol camera is a two-color, polarization-sensitive bolometer receiver, and was installed on the 10 meter South Pole Telescope in January 2012. SPTpol is designed to study the faint polarization signals in the Cosmic Microwave Background, with two primary scientific goals. One is to constrain the tensor-to-scalar ratio of perturbations in the primordial plasma, and thus constrain the space of permissible in inflationary models. The other is to measure the weak lensing effect of large-scale structure on CMB polarization, which can be used to constrain the sum of neutrino masses as well as other growth-related parameters. The SPTpol focal plane consists of seven 84-element monolithic arrays of 150 GHz pixels (588 total) and 180 individual 90 GHz single- pixel modules. In this paper we present the design and characterization of the 90 GHz modules

    Optical Spectroscopy and Velocity Dispersions of Galaxy Clusters from the SPT-SZ Survey

    Get PDF
    We present optical spectroscopy of galaxies in clusters detected through the Sunyaev-Zel'dovich (SZ) effect with the South Pole Telescope (SPT). We report our own measurements of 61 spectroscopic cluster redshifts, and 48 velocity dispersions each calculated with more than 15 member galaxies. This catalog also includes 19 dispersions of SPT-observed clusters previously reported in the literature. The majority of the clusters in this paper are SPT-discovered; of these, most have been previously reported in other SPT cluster catalogs, and five are reported here as SPT discoveries for the first time. By performing a resampling analysis of galaxy velocities, we find that unbiased velocity dispersions can be obtained from a relatively small number of member galaxies (ā‰¾30), but with increased systematic scatter. We use this analysis to determine statistical confidence intervals that include the effect of membership selection. We fit scaling relations between the observed cluster velocity dispersions and mass estimates from SZ and X-ray observables. In both cases, the results are consistent with the scaling relation between velocity dispersion and mass expected from dark-matter simulations. We measure a ~30% log-normal scatter in dispersion at fixed mass, and a ~10% offset in the normalization of the dispersion-mass relation when compared to the expectation from simulations, which is within the expected level of systematic uncertainty

    The Growth of Cool Cores and Evolution of Cooling Properties in a Sample of 83 Galaxy Clusters at 0.3 < z < 1.2 Selected from the SPT-SZ Survey

    Get PDF
    We present first results on the cooling properties derived from Chandra X-ray observations of 83 high-redshift (0.3 0.75, consistent with earlier reports for clusters at z > 0.5 using similar definitions. Our measurements indicate that cool cores have been steadily growing over the 8 Gyr spanned by our sample, consistent with a constant, ~150 M_ā˜‰ yr^(ā€“1) cooling flow that is unable to cool below entropies of 10 keV cm^2 and, instead, accumulates in the cluster center. We estimate that cool cores began to assemble in these massive systems at z_(cool)=1.0^(+1.0)_(-0.2), which represents the first constraints on the onset of cooling in galaxy cluster cores. At high redshift (z ā‰³0.75), galaxy clusters may be classified as "cooling flows" (low central entropy, cooling time) but not "cool cores" (cuspy surface brightness profile), meaning that care must be taken when classifying these high-z systems. We investigate several potential biases that could conspire to mimic this cool core evolution and are unable to find a bias that has a similar redshift dependence and a substantial amplitude

    Measurement of Galaxy Cluster Integrated Comptonization and Mass Scaling Relations with the South Pole Telescope

    Get PDF
    We describe a method for measuring the integrated Comptonization (Y_(SZ)) of clusters of galaxies from measurements of the Sunyaev-Zel'dovich (SZ) effect in multiple frequency bands and use this method to characterize a sample of galaxy clusters detected in the South Pole Telescope (SPT) data. We use a Markov Chain Monte Carlo method to fit a Ī²-model source profile and integrate Y_(SZ) within an angular aperture on the sky. In simulated observations of an SPT-like survey that include cosmic microwave background anisotropy, point sources, and atmospheric and instrumental noise at typical SPT-SZ survey levels, we show that we can accurately recover Ī²-model parameters for inputted clusters. We measure Y_(SZ) for simulated semi-analytic clusters and find that Y_(SZ) is most accurately determined in an angular aperture comparable to the SPT beam size. We demonstrate the utility of this method to measure Y_(SZ) and to constrain mass scaling relations using X-ray mass estimates for a sample of 18 galaxy clusters from the SPT-SZ survey. Measuring Y_(SZ) within a 0.'75 radius aperture, we find an intrinsic log-normal scatter of 21% Ā± 11% in Y_(SZ) at a fixed mass. Measuring Y_(SZ) within a 0.3 Mpc projected radius (equivalent to 0.'75 at the survey median redshift z = 0.6), we find a scatter of 26% Ā± 9%. Prior to this study, the SPT observable found to have the lowest scatter with mass was cluster detection significance. We demonstrate, from both simulations and SPT observed clusters that Y_(SZ) measured within an aperture comparable to the SPT beam size is equivalent, in terms of scatter with cluster mass, to SPT cluster detection significance
    • ā€¦
    corecore