7,183 research outputs found

    Tracking Transfer of Reform Methodology from Science and Math College Courses to the Teaching Style of Beginning Teachers of Grades 5-12

    Get PDF
    The purpose of this study was to determine if reformed science and math courses at community colleges and the university were impacting education majors as they began a teaching career. The reformed courses, in contrast to typical lecture classes, implemented inquiry-based methods that emphasized deep understanding of fundamental science and math concepts. Trained evaluators, utilizing the Reformed Teaching Observation Protocol (RTOP) gathered a total of 86 classroom observations to gauge the level of reform that beginning teachers (one to three years’ teaching experience) were implementing in grades 5-12. The pre-service experience of the beginning teachers varied from having had zero to four reform courses. Results indicated that teachers who had completed reform college courses instructed in a signiïŹcantly more reformed manner. Furthermore, analysis of years of teaching experience revealed that, while both control and experimental groups achieved higher RTOP scores as they progressed from year to year, the experimental group significantly outpaced their counterparts

    Hydrodynamic Simulations of Counterrotating Accretion Disks

    Get PDF
    Hydrodynamic simulations have been used to study accretion disks consisting of counterrotating components with an intervening shear layer(s). Configurations of this type can arise from the accretion of newly supplied counterrotating matter onto an existing corotating disk. The grid-dependent numerical viscosity of our hydro code is used to simulate the influence of a turbulent viscosity of the disk. Firstly, we consider the case where the gas well above the disk midplane rotates with angular rate +\Omega(r) and that well below has the same properties but rotates with rate -\Omega(r). We find that there is angular momentum annihilation in a narrow equatorial boundary layer in which matter accretes supersonically with a velocity which approaches the free-fall velocity and the average accretion speed of the disk can be enormously larger than that for a conventional \alpha-disk rotating in one direction. Secondly, we consider the case of a corotating accretion disk for rr_t. In this case we observed, that matter from the annihilation layer lost its stability and propagated inward pushing matter of inner regions of the disk to accrete. Thirdly, we investigated the case where counterrotating matter inflowing from large radial distances encounters an existing corotating disk. Friction between the inflowing matter and the existing disk is found to lead to fast boundary layer accretion along the disk surfaces and to enhanced accretion in the main disk. These models are pertinent to the formation of counterrotating disks in galaxies and possibly in Active Galactic Nuclei and in X-ray pulsars in binary systems.Comment: LaTeX, 18 pages, to appear in Ap

    Effect of in-plane magnetic field on magnetic phase transitions in nu=2 bilayer quantum Hall systems

    Full text link
    By using the effective bosonic spin theory, which is recently proposed by Demler and Das Sarma [ Phys. Rev. Lett. 82, 3895 (1999) ], we analyze the effect of an external in-plane magnetic field on the magnetic phase transitions of the bilayer quantum Hall system at filling factor nu=2. It is found that the quantum phase diagram is modified by the in-plane magnetic field. Therefore, quantum phase transitions can be induced simply by tilting the magnetic field. The general behavior of the critical tilted angle for different layer separations and interlayer tunneling amplitudes is shown. We find that the critical tilted angles being calculated agree very well with the reported values. Moreover, a universal critical exponent for the transition from the canted antiferromagnetic phase to the ferromagnetic phase is found to be equal to 1/2 within the present effective theory.Comment: RevTeX, 4 pages with 3 EPS figures include

    Doubly Enhanced Skyrmions in Μ=2\nu =2 Bilayer Quantum Hall States

    Full text link
    By tilting the samples in the magnetic field, we measured and compared the Skyrmion excitations in the bilayer quantum Hall (QH) state at the Landau-level filling factor Μ=2\nu =2 and in the monolayer QH state at Μ=1\nu =1. The observed number of flipped spins is Ns=14N_s=14 in the bilayer system with a large tunneling gap, and Ns=7N_s=7 in the bilayer system with a small tunneling gap, while it is Ns=7N_s=7 in the monolayer system. The difference is interpreted due to the interlayer exchange interaction. Moreover, we have observed seemingly preferred numbers Ns=14,7,1N_s=14,7,1 for the flipped spins by tilting bilayer samples.Comment: 4 pages, 4 figure

    Finite-temperature phase transitions in Μ=2\nu=2 bilayer quantum Hall systems

    Full text link
    In this paper, the influence of an in-plane magnetic field B_\parallel on the finite-temperature phase transitions in nu=2 bilayer quantum Hall systems are examined. It is found that there can exist two types of finite-temperature phase transitions. The first is the Kosterlitz-Thouless (KT) transitions, which can have an unusual non-monotonic dependence on B_\parallel; the second type originates from the crossing of energy levels and always increases with B_\parallel. Based on these results, we point out that the threshold temperature observed in the inelastic light scattering experiments cannot be the KT transition temperature, because the latter shows a totally different B_\parallel-dependence as compared with the experimental observation. Instead, it should be the level-crossing temperature, which we found agrees with the B_\parallel-dependence observed. Moreover, combining the knowledge of these two transition temperatures, a complete finite-temperature phase diagram is presented.Comment: RevTeX, 5 pages with 3 EPS figures include

    First-Principles Computation of YVO3; Combining Path-Integral Renormalization Group with Density-Functional Approach

    Full text link
    We investigate the electronic structure of the transition-metal oxide YVO3 by a hybrid first-principles scheme. The density-functional theory with the local-density-approximation by using the local muffin-tin orbital basis is applied to derive the whole band structure. The electron degrees of freedom far from the Fermi level are eliminated by a downfolding procedure leaving only the V 3d t2g Wannier band as the low-energy degrees of freedom, for which a low-energy effective model is constructed. This low-energy effective Hamiltonian is solved exactly by the path-integral renormalization group method. It is shown that the ground state has the G-type spin and the C-type orbital ordering in agreement with experimental indications. The indirect charge gap is estimated to be around 0.7 eV, which prominently improves the previous estimates by other conventional methods

    Spin mapping, phase diagram, and collective modes in double layer quantum Hall systems at Μ=2\nu=2

    Full text link
    An exact spin mapping is identified to simplify the recently proposed hard-core boson description (Demler and Das Sarma, Phys. Rev. Lett., to be published) of the bilayer quantum Hall system at filling factor 2. The effective spin model describes an easy-plane ferromagnet subject to an external Zeeman field. The phase diagram of this effective model is determined exactly and found to agree with the approximate calculation of Demler and Das Sarma, while the Goldstone-mode spectrum, order parameter stiffness and Kosterlitz-Thouless temperature in the canted antiferromagnetic phase are computed approximately.Comment: 4 pages with 2 figures include

    Interferometric 12CO(J=2-1) image of the Nuclear Region of Seyfert 1 Galaxy NGC 1097

    Full text link
    We have mapped the central region of the Seyfert 1 galaxy NGC 1097 in 12CO(J=2-1) with the Submillieter Array (SMA). The 12CO(J=2-1) map shows a central concentration and a surrounding ring, which coincide respectively with the Seyfert nucleus and a starburst ring. The line intensity peaks at the nucleus, whereas in a previously published 12CO(J=1-0) map the intensity peaks at the starburst ring. The molecular ring has an azimuthally averaged 12CO(J=2-1)/(J=1-0) intensity ratio (R21) of about unity, which is similar to those in nearby active star forming galaxies, suggesting that most of the molecular mass in the ring is involved in fueling the starburst. The molecular gas can last for only about 1.2\times10^8 years without further replenishment assuming a constant star formation rate and a perfect conversion of gas to stars. The velocity map shows that the central molecular gas is rotating with the molecular ring in the same direction, while its velocity gradient is much steeper than that of the ring. This velocity gradient of the central gas is similar to what is usually observed in some Seyfert 2 galaxies. To view the active nucleus directly in the optical, the central molecular gas structure can either be a low-inclined disk or torus but not too low to be less massive than the mass of the host galaxy itself, be a highly-inclined thin disk or clumpy and thick torus, or be an inner part of the galactic disk. The R21 value of ~1.9 of the central molecular gas component, which is significantly higher than the value found at the molecular gas ring, indicates that the activity of the Seyfert nucleus may have a significant influence on the conditions of the molecular gas in the central component.Comment: 22 pages, 4 figures, accepted by Ap
    • 

    corecore