540 research outputs found

    Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting

    Get PDF
    A high-throughput method has been developed using a commercial piezoelectric inkjet printer for synthesis and characterization of mixed-metal oxide photoelectrode materials for water splitting. The printer was used to deposit metal nitrate solutions onto a conductive glass substrate. The deposited metal nitrate solutions were then pyrolyzed to yield mixed-metal oxides that contained up to eight distinct metals. The stoichiometry of the metal oxides was controlled quantitatively, allowing for the creation of vast libraries of novel materials. Automated methods were developed to measure the open-circuit potentials (Eoc), short-circuit photocurrent densities (Jsc), and current density vs. applied potential (J–E) behavior under visible light irradiation. The high-throughput measurement of Eoc is particularly significant because open-circuit potential measurements allow the interfacial energetics to be probed regardless of whether the band edges of the materials of concern are above, close to, or below the values needed to sustain water electrolysis under standard conditions. The Eoc measurements allow high-throughput compilation of a suite of data that can be associated with the composition of the various materials in the library, to thereby aid in the development of additional screens and to form a basis for development of theoretical guidance in the prediction of additional potentially promising photoelectrode compositions

    Conversion of neutral nitrogen-vacancy centers to negatively-charged nitrogen-vacancy centers through selective oxidation

    Full text link
    The conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers is demonstrated for centers created by ion implantation and annealing in high-purity diamond. Conversion occurs with surface exposure to an oxygen atmosphere at 465 C. The spectral properties of the charge-converted centers are investigated. Charge state control of nitrogen-vacancy centers close to the diamond surface is an important step toward the integration of these centers into devices for quantum information and magnetic sensing applications.Comment: 4 pages, 3 figure

    Chip-based microcavities coupled to NV centers in single crystal diamond

    Full text link
    Optical coupling of nitrogen vacancy centers in single-crystal diamond to an on-chip microcavity is demonstrated. The microcavity is fabricated from a hybrid gallium phosphide and diamond material system, and supports whispering gallery mode resonances with spectrometer resolution limited Q > 25000

    Nanocavity enhanced diamond nitrogen-vacancy center zero phonon line emission

    Get PDF
    Resonantly enhanced emission of the zero phonon line of a diamond nitrogen-vacancy center in single crystal diamond is demonstrated experimentally using a hybrid whispering gallery mode nanocavity

    Low-temperature tapered-fiber probing of diamond NV ensembles coupled to GaP microcavities

    Get PDF
    In this work we present a platform for testing the device performance of a cavity-emitter system, using an ensemble of emitters and a tapered optical fiber. This method provides high-contrast spectra of the cavity modes, selective detection of emitters coupled to the cavity, and an estimate of the device performance in the single- emitter case. Using nitrogen-vacancy (NV) centers in diamond and a GaP optical microcavity, we are able to tune the cavity onto the NV resonance at 10 K, couple the cavity-coupled emission to a tapered fiber, and measure the fiber-coupled NV spontaneous emission decay. Theoretically we show that the fiber-coupled average Purcell factor is 2-3 times greater than that of free-space collection; although due to ensemble averaging it is still a factor of 3 less than the Purcell factor of a single, ideally placed center.Comment: 15 pages, 6 figure

    Sub-microsecond correlations in photoluminescence from InAs quantum dots

    Full text link
    Photon correlation measurements reveal memory effects in the optical emission of single InAs quantum dots with timescales from 10 to 800 ns. With above-band optical excitation, a long-timescale negative correlation (antibunching) is observed, while with quasi-resonant excitation, a positive correlation (blinking) is observed. A simple model based on long-lived charged states is presented that approximately explains the observed behavior, providing insight into the excitation process. Such memory effects can limit the internal efficiency of light emitters based on single quantum dots, and could also be problematic for proposed quantum-computation schemes.Comment: 8 pages, 8 figure

    Towards Integrated Optical Quantum Networks in Diamond

    Get PDF
    We demonstrate coupling between the zero phonon line (ZPL) of nitrogen-vacancy centers in diamond and the modes of optical micro-resonators fabricated in single crystal diamond membranes sitting on a silicon dioxide substrate. A more than ten-fold enhancement of the ZPL is estimated by measuring the modification of the spontaneous emission lifetime. The cavity-coupled ZPL emission was further coupled into on-chip waveguides thus demonstrating the potential to build optical quantum networks in this diamond on insulator platform

    Properties of implanted and CVD incorporated nitrogen-vacancy centers: preferential charge state and preferential orientation

    Get PDF
    The combination of the long electron state spin coherence time and the optical coupling of the ground electronic states to an excited state manifold makes the nitrogen-vacancy (NV) center in diamond an attractive candidate for quantum information processing. To date the best spin and optical properties have been found in centers deep within the diamond crystal. For useful devices it will be necessary to engineer NVs with similar properties close to the diamond surface. We report on properties including charge state control and preferential orientation for near surface NVs formed either in CVD growth or through implantation and annealing

    Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide

    Full text link
    The optical coupling of guided modes in a GaP waveguide to nitrogen-vacancy (NV) centers in diamond is demonstrated. The electric field penetration into diamond and the loss of the guided mode are measured. The results indicate that the GaP-diamond system could be useful for realizing coupled microcavity-NV devices for quantum information processing in diamond.Comment: 4 pages 4 figure
    • …
    corecore