10 research outputs found

    Should we hail the Red King: evolutionary consequences of a mutualistic lifestyle in genomes of lichenized fungi

    Get PDF
    The Red Queen dynamic is often brought into play for antagonistic relationships. However, the coevolutionary effects of mutualistic interactions, which predict slower evolution for interacting organisms (Red King), have been investigated to a lesser extent. Lichens are a stable, mutualistic relationship of fungi and cyanobacteria and/ or algae, which originated several times independently during the evolution of fungi. Therefore, they represent a suitable system to investigate the coevolutionary effect of mutualism on the fungal genome. We measured substitution rates and selective pressure of about 2000 protein-coding genes (plus the rDNA region) in two different classes of Ascomycota, each consisting of closely related lineages of lichenized and non-lichenized fungi. Our results show that independent lichenized clades are characterized by significantly slower rates for both synonymous and non-synonymous substitutions. We hypothesize that this evolutionary pattern is connected to the lichen life cycle (longer generation time of lichenized fungi) rather than a result of different selection strengths, which is described as the main driver for the Red Kind dynamic. This first empirical evidence of slower evolution in lichens provides an important insight on how biotic cooperative interactions are able to shape the evolution of symbiotic organisms

    Ascospore discharge, germination and culture of fungal partners of tropical lichens, including the use of a novel culture technique

    Get PDF
    A total of 292 lichen samples, representing over 200 species and at least 65 genera and 26 families, were collected, mainly in Thailand; 170 of the specimens discharged ascospores in the laboratory. Generally, crustose lichens exhibited the highest discharge rates and percentage germination. In contrast, foliose lichen samples, although having a high discharge rate, had a lower percentage germination than crustose species tested. A correlation with season was indicated for a number of species. Continued development of germinated ascospores into recognizable colonies in pure culture was followed for a selection of species. The most successful medium tried was 2 % Malt-Yeast extract agar (MYA), and under static conditions using a liquid culture medium, a sponge proved to be the best of several physical carriers tested; this novel method has considerable potential for experimental work with lichen mycobionts

    Comparative Study on the Antimicrobial Activities and Metabolic Profiles of Five <i>Usnea</i> Species from the Philippines

    No full text
    The rapid emergence of resistant bacteria is occurring worldwide, endangering the efficacy of antibiotics. Hence, there is a need to search for new sources of antibiotics that either exhibit novel structures or express a new mechanism of action. The lichen Usnea, with its wide range of unique, biologically potent secondary metabolites, may solve this problem. In this study, Usnea species were collected in the Northern Philippines, identified through combined morphological and biochemical characterization, and tested for antimicrobial activities against the multidrug-resistant ESKAPE pathogens, i.e., Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae, two standard antibiotic-sensitive test bacteria, and a yeast. A total of 46 lichen specimens were collected and later identified as Usnea baileyi (10), U. diffracta (10), U. glabrata (12), U. longissima (4), and U. rubicunda (10). The results show that the crude extracts of the Usnea species exhibited promising in vitro inhibitory activities against standard antibiotic-sensitive (E. faecalis ATCC 29212) and multidrug-resistant (methicillin-resistant S. aureus and E. faecalis) Gram-positive bacteria. Additionally, lichen compounds of representative specimens per species were identified and profiled using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The detection of lichen acids (LA) via HPLC showed the presence of 24 peaks of lichen acids. TLC-bioautography identified the bioactive lichen acids as alectronic acid, connorstictic acid, consalazinic acid, diffractaic acid, echinocarpic acid, erythrin acid, galbinic acid, hypoconstictic acid, hyposalazinic acid, hypostictic acid, lobaric acid, menegazzaic acid, micareic acid, pannarin, salazinic acid, stictic acid, and usnic acid. Our study highlighted the wide spectrum of opportunities for using lichens for the discovery of potential antimicrobial agents

    Hemoglobin E: Distribution and population dynamics

    No full text
    corecore