1 research outputs found

    Climate and atmospheric history of the past 420,000 years from the Vostok ice core,

    Get PDF
    Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles. The succession of changes through each climate cycle and termination was similar, and atmospheric and climate properties oscillated between stable bounds. Interglacial periods differed in temporal evolution and duration. Atmospheric concentrations of carbon dioxide and methane correlate well with Antarctic air-temperature throughout the record. Present-day atmospheric burdens of these two important greenhouse gases seem to have been unprecedented during the past 420,000 years. The late Quaternary period (the past one million years) is punctuated by a series of large glacial-interglacial changes with cycles that last about 100,000 years (ref. 1). Glacial-interglacial climate changes are documented by complementary climate records 1,2 largely derived from deep sea sediments, continental deposits of flora, fauna and loess, and ice cores. These studies have documented the wide range of climate variability on Earth. They have shown that much of the variability occurs with periodicities corresponding to that of the precession, obliquity and eccentricity of the Earth's orbit 1,3 . But understanding how the climate system responds to this initial orbital forcing is still an important issue in palaeoclimatology, in particular for the generally strong ϳ100,000-year (100-kyr) cycle. Ice cores give access to palaeoclimate series that includes local temperature and precipitation rate, moisture source conditions, wind strength and aerosol fluxes of marine, volcanic, terrestrial, cosmogenic and anthropogenic origin. They are also unique with their entrapped air inclusions in providing direct records of past changes in atmospheric trace-gas composition. The ice-drilling project undertaken in the framework of a long-term collaboration between Russia, the United States and France at the Russian Vostok station in East Antarctica (78Њ S, 106Њ E, elevation 3,488 m, mean temperature −55 ЊC) has already provided a wealth of such information for the past two glacial-interglacial cycles [4][5][6][7][8][9] Here we present a series of detailed Vostok records covering this ϳ400-kyr period. We show that the main features of the more recent Vostok climate cycle resemble those observed in earlier cycles. In particular, we confirm the strong correlation between atmospheric greenhouse-gas concentrations and Antarctic temperature, as well as the strong imprint of obliquity and precession in most of the climate time series. Our records reveal both similarities and differences between the successive interglacial periods. They suggest the lead of Antarctic air temperature, and of atmospheric greenhousegas concentrations, with respect to global ice volume and Greenland air-temperature changes during glacial terminations. The ice record The data are shown in Figs 1, 2 and 3 (see Supplementary Information for the numerical data). They include the deuterium content of the ice (dD ice , a proxy of local temperature change), the dust content (desert aerosols), the concentration of sodium (marine aerosol), and from the entrapped air the greenhouse gases CO 2 and CH 4 , and the d 18 O are defined in the legends to Figs 1 and 2, respectively.) All these measurements have been performed using methods previously described except for slight modifications (see The detailed record of dD ic
    corecore