788 research outputs found
Spin squeezing of atomic ensembles by multi-colour quantum non-demolition measurements
We analyze the creation of spin squeezed atomic ensembles by simultaneous
dispersive interactions with several optical frequencies. A judicious choice of
optical parameters enables optimization of an interferometric detection scheme
that suppresses inhomogeneous light shifts and keeps the interferometer
operating in a balanced mode that minimizes technical noise. We show that when
the atoms interact with two-frequency light tuned to cycling transitions the
degree of spin squeezing scales as where is the
resonant optical depth of the ensemble. In real alkali atoms there are loss
channels and the scaling may be closer to Nevertheless
the use of two-frequencies provides a significant improvement in the degree of
squeezing attainable as we show by quantitative analysis of non-resonant
probing on the Cs D1 line. Two alternative configurations are analyzed: a
Mach-Zehnder interferometer that uses spatial interference, and an interaction
with multi-frequency amplitude modulated light that does not require a spatial
interferometer.Comment: 7 figure
Measurement of Holmium Rydberg series through MOT depletion spectroscopy
We report measurements of the absolute excitation frequencies of Ho
and odd-parity Rydberg series. The states are
detected through depletion of a magneto-optical trap via a two-photon
excitation scheme. Measurements of 162 Rydberg levels in the range
yield quantum defects well described by the Rydberg-Ritz formula. We observe a
strong perturbation in the series around due to an unidentified
interloper at 48515.47(4) cm. From the series convergence, we determine
the first ionization potential cm, which is
three orders of magnitude more accurate than previous work. This work
represents the first time such spectroscopy has been done in Holmium and is an
important step towards using Ho atoms for collective encoding of a quantum
register.Comment: 6 figure
Universal Quantum Computation in a Neutral Atom Decoherence Free Subspace
In this paper, we propose a way to achieve protected universal computation in
a neutral atom quantum computer subject to collective dephasing. Our proposal
relies on the existence of a Decoherence Free Subspace (DFS), resulting from
symmetry properties of the errors. After briefly describing the physical system
and the error model considered, we show how to encode information into the DFS
and build a complete set of safe universal gates. Finally, we provide numerical
simulations for the fidelity of the different gates in the presence of
time-dependent phase errors and discuss their performance and practical
feasibility.Comment: 7 pages, 8 figure
Error correction in ensemble registers for quantum repeaters and quantum computers
We propose to use a collective excitation blockade mechanism to identify
errors that occur due to disturbances of single atoms in ensemble quantum
registers where qubits are stored in the collective population of different
internal atomic states. A simple error correction procedure and a simple
decoherence-free encoding of ensemble qubits in the hyperfine states of alkali
atoms are presented.Comment: 4 pages, 2 figure
Long wavelength spin dynamics of ferromagnetic condensates
We obtain the equations of motion for a ferromagnetic Bose condensate of
arbitrary spin in the long wavelength limit. We find that the magnetization of
the condensate is described by a non-trivial modification of the
Landau-Lifshitz equation, in which the magnetization is advected by the
superfluid velocity. This hydrodynamic description, valid when the condensate
wavefunction varies on scales much longer than either the density or spin
healing lengths, is physically more transparent than the corresponding
time-dependent Gross-Pitaevskii equation. We discuss the conservation laws of
the theory and its application to the analysis of the stability of magnetic
helices and Larmor precession. Precessional instabilities in particular provide
a novel physical signature of dipolar forces. Finally, we discuss the
anisotropic spin wave instability observed in the recent experiment of
Vengalattore et. al. (Phys. Rev. Lett. 100, 170403, (2008)).Comment: arXiv version contains additional Section V relevant to the
experiment of Vengalattore et. al. (Phys. Rev. Lett. 100, 170403, (2008)
A Robust Numerical Method for Integration of Point-Vortex Trajectories in Two Dimensions
The venerable 2D point-vortex model plays an important role as a simplified
version of many disparate physical systems, including superfluids,
Bose-Einstein condensates, certain plasma configurations, and inviscid
turbulence. This system is also a veritable mathematical playground, touching
upon many different disciplines from topology to dynamic systems theory.
Point-vortex dynamics are described by a relatively simple system of nonlinear
ODEs which can easily be integrated numerically using an appropriate adaptive
time stepping method. As the separation between a pair of vortices relative to
all other inter-vortex length scales decreases, however, the computational time
required diverges. Accuracy is usually the most discouraging casualty when
trying to account for such vortex motion, though the varying energy of this
ostensibly Hamiltonian system is a potentially more serious problem. We solve
these problems by a series of coordinate transformations: We first transform to
action-angle coordinates, which, to lowest order, treat the close pair as a
single vortex amongst all others with an internal degree of freedom. We next,
and most importantly, apply Lie transform perturbation theory to remove the
higher-order correction terms in succession. The overall transformation
drastically increases the numerical efficiency and ensures that the total
energy remains constant to high accuracy.Comment: 21 pages, 4 figure
Zeros of Rydberg-Rydberg Foster Interactions
Rydberg states of atoms are of great current interest for quantum
manipulation of mesoscopic samples of atoms. Long-range Rydberg-Rydberg
interactions can inhibit multiple excitations of atoms under the appropriate
conditions. These interactions are strongest when resonant collisional
processes give rise to long-range C_3/R^3 interactions. We show in this paper
that even under resonant conditions C_3 often vanishes so that care is required
to realize full dipole blockade in micron-sized atom samples.Comment: 10 pages, 4 figures, submitted to J. Phys.
Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions
We demonstrate Rabi flopping of small numbers of atoms between
ground and Rydberg states with . Coherent population oscillations are
observed for single atom flopping, while the presence of two or more atoms
decoheres the oscillations. We show that these observations are consistent with
van der Waals interactions of Rydberg atoms.Comment: 4 pages, 6 figure
Influence of the disorder on tracer dispersion in a flow channel
Tracer dispersion is studied experimentally in periodic or disordered arrays
of beads in a capillary tube. Dispersion is measured from light absorption
variations near the outlet following a steplike injection of dye at the inlet.
Visualizations using dye and pure glycerol are also performed in similar
geometries. Taylor dispersion is dominant both in an empty tube and for a
periodic array of beads: the dispersivity increases with the P\'eclet
number respectively as and and is larger by a factor of 8
in the second case. In a disordered packing of smaller beads (1/3 of the tube
diameter) geometrical dispersion associated to the disorder of the flow field
is dominant with a constant value of reached at high P\'eclet numbers.
The minimum dispersivity is slightly higher than in homogeneous nonconsolidated
packings of small grains, likely due heterogeneities resulting from wall
effects. In a disordered packing with the same beads as in the periodic
configuration, is up to 20 times lower than in the latter and varies as
with or (depending on the fluid viscosity).
A simple model accounting for this latter result is suggested.Comment: available online at
http://www.edpsciences.org/journal/index.cfm?edpsname=epjap&niv1=contents&niv2=archive
- …