154 research outputs found

    Comparative study of technologies for extraction of biologically active substances from the raw material of animal origin

    Get PDF
    Technologies of isolation and concentration of biologically active substances, developed in the middle of the 20th century, need adjustment and adaptation to modern conditions both to increase the activity of substances and for greater economic efficiency. The aim of the research is the comparison of dynamics of biologically active compounds extraction from porcines pancreas in two methods: the saline method based on 0.9% sodium chloride solution, and the acidic method based on 2.4% trichloroacetic acid solution. Also the purpose of research is to assess the possibilities for further optimization of technologies. The total protein concentration based on the biuret reaction in the samples taken during the extraction, as well as the calculation and analysis of the point degrees and rates of extraction are chosen as the controlled parameters. Local maxima of the protein yields into the extractant media at the 60th, 135th and 255th minute were recorded during saline extraction; and at the 75th and 135th minute during acid extraction. Also the proteomic profile of the extracts was studied. Wide range of compounds with molecular weight of less than 52 kDa was found in extracts based on physiological saline solution, and protein substances of whole presented range of molecular weights in trichloroacetic acid based extracts were considered. The predominance of low molecular weight protein fraction of interest was noted also in this method of extraction in comparison with the other methods of extraction. According to the UniProt database, we assume availability of probable compounds with a molecular weight of less than 30 kDa in the purified acidic extract. The presence of some proteins absent in the final saline extract was noted. The acidic erythrograms showed a weak degrading effect of both types of extracts on the membranes of rat erythrocytes, as well as the cytoprotective effect of acidic ultrafiltrates (less than 3 kDa). The obtained results prove a better efficiency of trichloroacetic acid extraction method used for obtaining a mixture of a wide range of compounds, including biologically active substances of low molecular weight

    Водно-солевая экстракция как метод получения смеси биологически активных соединений белковой природы из поджелудочной железы свиньи

    Get PDF
    A relevant solution to the problem of processing meat industry waste in Russia is to obtain useful biologically active compounds from abundant organs. The aim of this study was to examine the effectiveness of the saline extraction as a method for extracting a mixture of promising biologically active compounds from the porcine pancreas, as well as to determine the optimal time for the process. The study consisted of extraction of the porcine pancreas with 0,9% sodium chloride solution for 5 h 30 min with further determination of the total protein concentration and proteomic profile of the samples taken throughout the process. Based on the analysis of the dependence of the total protein content in the extractant on time, the optimal extraction time was determined to be 135–150 minutes. When studying the results of electrophoresis and the data of their processing, the optimal extraction time for the targeted isolation of the low-molecular fraction of compounds was also determined to be 90 min. At the same time, 13 protein bands with a molecular weight of 52 kDa and below were found on the electropherograms. Saline should be considered applicable for obtaining extracts rich in biologically active substances, incl. hormones, enzymes and other physiologically active compounds.Актуальным решением проблемы переработки отходов мясной промышленности в России является получение полезных биологически активных соединений из богатых ими органов. Целью настоящего исследования было изучение эффективности метода экстракции физиологическим раствором как способа извлечения смеси перспективных биологически активных соединений из поджелудочной железы свиньи, а также определение оптимального времени процесса. Исследование заключалось в проведении экстракции поджелудочной железы 0,9% раствором натрия хлорида в течение 5 ч 30 мин с дальнейшим определением общей концентрации белка биуретовым методом. Также получен протеомный профиль образцов, отбираемых на протяжении всего процесса, методом одномерного денатурирующего электрофореза по Лэммли в 12,5% полиакриламидном геле. На основе анализа зависимости содержания общего белка в экстрагенте от времени определено оптимальное время экстракции, которое составило 135–150 мин. По результатам электрофореза и данных биоинформационного анализа оптимальное время экстракции для целенаправленного выделения низкомолекулярной фракции соединений составляло 90 мин. На электрофореграммах обнаружены 13 белковых полос с молекулярной массой 52 кДа и ниже. Таким образом, 0,9% раствор натрия хлорида применим для получения экстрактов, богатых биоактивными веществами, в том числе гормонами, ферментами и другими физиологически активными соединениями

    Selective BRAFV600E Inhibitor PLX4720, Requires TRAIL Assistance to Overcome Oncogenic PIK3CA Resistance

    Get PDF
    Documented sensitivity of melanoma cells to PLX4720, a selective BRAFV600E inhibitor, is based on the presence of mutant BRAFV600E alone, while wt-BRAF or mutated KRAS result in cell proliferation. In colon cancer appearance of oncogenic alterations is complex , since BRAF, like KRAS mutations, tend to co-exist with those in PIK3CA and mutated PI3K has been shown to interfere with the successful application of MEK inhibitors. When PLX4720 was used to treat colon tumours, results were not encouraging and herein we attempt to understand the cause of this recorded resistance and discover rational therapeutic combinations to resensitize oncogene driven tumours to apoptosis. Treatment of two genetically different BRAFV600E mutant colon cancer cell lines with PLX4720 conferred complete resistance to cell death. Even though p-MAPK/ ERK kinase (MEK) suppression was achieved, TRAIL, an apoptosis inducing agent, was used synergistically in order to achieve cell death by apoptosis in RKOBRAFV600E/PIK3CAH1047 cells. In contrast, for the same level of apoptosis in HT29BRAFV600E/PIK3CAP449T cells, TRAIL was combined with 17-AAG, an Hsp90 inhibitor. For cells where PLX4720 was completely ineffective, 17-AAG was alternatively used to target mutant BRAFV600E. TRAIL dependence on the constitutive activation of BRAFV600E is emphasised through the overexpression of BRAFV600E in the permissive genetic background of colon adenocarcinoma Caco-2 cells. Pharmacological suppression of the PI3K pathway further enhances the synergistic effect between TRAIL and PLX4720 in RKO cells, indicating the presence of PIK3CAMT as the inhibitory factor. Another rational combination includes 17-AAG synergism with TRAIL in a BRAFV600E mutant dependent manner to commit cells to apoptosis, through DR5 and the amplification of the apoptotic pathway. We have successfully utilised combinations of two chemically unrelated BRAFV600E inhibitors in combination with TRAIL in a BRAFV600E mutated background and provided insight for new anti-cancer strategies where the activated PI3KCA mutation oncogene should be suppressed

    Novel Oncogenic Transcription Factor Cooperation in RB-Deficient Cancer

    Get PDF
    The retinoblastoma tumor suppressor (RB) is a critical regulator of E2F-dependent transcription, controlling a multitude of protumorigenic networks including but not limited to cell-cycle control. Here, genome-wide assessment of E2F1 function after RB loss in isogenic models of prostate cancer revealed unexpected repositioning and cooperation with oncogenic transcription factors, including the major driver of disease progression, the androgen receptor (AR). Further investigation revealed that observed AR/E2F1 cooperation elicited novel transcriptional networks that promote cancer phenotypes, especially as related to evasion of cell death. These observations were reflected in assessment of human disease, indicating the clinical relevance of the AR/E2F1 cooperome in prostate cancer. Together, these studies reveal new mechanisms by which RB loss induces cancer progression and highlight the importance of understanding the targets of E2F1 function. SIGNIFICANCE: This study identifies that RB loss in prostate cancer drives cooperation between AR and E2F1 as coregulators of transcription, which is linked to the progression of advanced disease

    A Novel Role for DNA-PK in Metabolism by Regulating Glycolysis in Castration Resistant Prostate Cancer

    Get PDF
    Published first January 24, 2022.Purpose: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, herein referred as DNA-PK) is a multifunctional kinase of high cancer relevance. DNA-PK is deregulated in multiple tumor types, including prostate cancer, and is associated with poor outcomes. DNA-PK was previously nominated as a therapeutic target and DNA-PK inhibitors are currently undergoing clinical investigation. Although DNA-PK is well studied in DNA repair and transcriptional regulation, much remains to be understood about the way by which DNA-PK drives aggressive disease phenotypes. Experimental Design: Here, unbiased proteomic and metabolomic approaches in clinically relevant tumor models uncovered a novel role of DNA-PK in metabolic regulation of cancer progression. DNA-PK regulation of metabolism was interrogated using pharmacologic and genetic perturbation using in vitro cell models, in vivo xenografts, and ex vivo in patient-derived explants (PDE). Results: Key findings reveal: (i) the first-in-field DNA-PK protein interactome; (ii) numerous DNA-PK novel partners involved in glycolysis; (iii) DNA-PK interacts with, phosphorylates (in vitro), and increases the enzymatic activity of glycolytic enzymes ALDOA and PKM2; (iv) DNA-PK drives synthesis of glucosederived pyruvate and lactate; (v) DNA-PK regulates glycolysis in vitro, in vivo, and ex vivo; and (vi) combination of DNA-PK inhibitor with glycolytic inhibitor 2-deoxyglucose leads to additive anti-proliferative effects in aggressive disease. Conclusions: Findings herein unveil novel DNA-PK partners, substrates, and function in prostate cancer. DNA-PK impacts glycolysis through direct interaction with glycolytic enzymes and modulation of enzymatic activity. These events support energy production that may contribute to generation and/or maintenance of DNA-PK–mediated aggressive disease phenotypes.Emanuela Dylgjeri, Vishal Kothari, Ayesha A. Shafi, Galina Semenova, Peter T. Gallagher, Yi F. Guan, Angel Pang, Jonathan F. Goodwin, Swati Irani, Jennifer J. McCann, Amy C. Mandigo, Saswati Chand, Christopher M. McNair, Irina Vasilevskaya, MatthewJ. Schiewer, Costas D. Lallas, Peter A. McCue, Leonard G. Gomella, Erin L. Seifert, Jason S. Carroll, Lisa M. Butler, Jeff Holst, William K. Kelly, and Karen E. Knudse

    In vitro hypoxia-conditioned colon cancer cell lines derived from HCT116 and HT29 exhibit altered apoptosis susceptibility and a more angiogenic profile in vivo

    Get PDF
    Hypoxia is an important selective force in the clonal evolution of tumours. Through HIF-1 and other transcription factors combined with tumour-specific genetic alterations, hypoxia is a dominant factor in the angiogenic phenotype. Cellular adaptation to hypoxia is an important requirement of tumour progression independent of angiogenesis. The adaptive changes, insofar as they alter hypoxia-induced apoptosis, are likely to determine responsiveness to antiangiogenic strategies. To investigate this adaptation of tumour cells to hypoxia, we recreated in vitro the in vivo situation of chronic intermittent exposure to low-oxygen levels. The colon carcinoma cell lines HT29 and HCT116 were subjected to 40 episodes of sublethal hypoxia (4 h) three times a week. The resulting two hypoxia-conditioned cell lines have been maintained in culture for more than 2 years. In both cell lines changes in doubling times occurred: in HT29 an increase, and in HCT116 a decrease. Cell survival in response to hypoxia and to DNA damage differed strikingly in the two cell lines. The HT29 hypoxia-conditioned cells were more resistant than the parental line to a 24 h hypoxic challenge, while those from HCT116 surprisingly were more sensitive. Sensitivity to cisplatin in vitro was also significantly different for the hypoxia-conditioned compared with the parental lines, suggesting a change in pathways leading to apoptosis following DNA damage signaling. The growth of both conditioned cell lines in vivo as xenografts in immunodeficient (SCID) mice was more rapid than their parental lines, and was accompanied in each by evidence of enhanced vascular proliferation as a consequence of the hypoxia-conditioning. Thus the changes in apoptotic susceptibility were independent of altered angiogenesis. The derivation of these lines provides a model for events within hypoxic regions of colon cancers, and for the acquisition of resistance and sensitivity characteristics that may have therapeutic implications for the use of antiangiogenesis drugs

    The circadian cryptochrome, CRY1, is a pro-tumorigenic factor that rhythmically modulates DNA repair.

    Get PDF
    Mechanisms regulating DNA repair processes remain incompletely defined. Here, the circadian factor CRY1, an evolutionally conserved transcriptional coregulator, is identified as a tumor specific regulator of DNA repair. Key findings demonstrate that CRY1 expression is androgen-responsive and associates with poor outcome in prostate cancer. Functional studies and first-in-field mapping of the CRY1 cistrome and transcriptome reveal that CRY1 regulates DNA repair and the G2/M transition. DNA damage stabilizes CRY1 in cancer (in vitro, in vivo, and human tumors ex vivo), which proves critical for efficient DNA repair. Further mechanistic investigation shows that stabilized CRY1 temporally regulates expression of genes required for homologous recombination. Collectively, these findings reveal that CRY1 is hormone-induced in tumors, is further stabilized by genomic insult, and promotes DNA repair and cell survival through temporal transcriptional regulation. These studies identify the circadian factor CRY1 as pro-tumorigenic and nominate CRY1 as a new therapeutic target
    corecore