40 research outputs found

    The endogenous anti-angiogenic VEGF isoform, VEGF165b inhibits human tumour growth in mice

    Get PDF
    Vascular endothelial growth factor-A is widely regarded as the principal stimulator of angiogenesis required for tumour growth. VEGF is generated as multiple isoforms of two families, the pro-angiogenic family generated by proximal splice site selection in the terminal exon, termed VEGFxxx, and the anti-angiogenic family formed by distal splice site selection in the terminal exon, termed VEGFxxxb, where xxx is the amino acid number. The most studied isoforms, VEGF165 and VEGF165b have been shown to be present in tumour and normal tissues respectively. VEGF165b has been shown to inhibit VEGF- and hypoxia-induced angiogenesis, and VEGF-induced cell migration and proliferation in vitro. Here we show that overexpression of VEGF165b by tumour cells inhibits the growth of prostate carcinoma, Ewing's sarcoma and renal cell carcinoma in xenografted mouse tumour models. Moreover, VEGF165b overexpression inhibited tumour cell-mediated migration and proliferation of endothelial cells. These data show that overexpression of VEGF165b can inhibit growth of multiple tumour types in vivo indicating that VEGF165b has potential as an anti-angiogenic, anti-tumour strategy in a number of different tumour types, either by control of VEGF165b expression by regulation of splicing, overexpression of VEGF165b, or therapeutic delivery of VEGF165b to tumours

    Neoadjuvant multidrug chemotherapy including High-Dose Methotrexate modifies VEGF expression in Osteosarcoma: an immunohistochemical analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis plays a role in the progression of osteosarcoma, as well as in other mesenchymal tumors and carcinomas, and it is most commonly assessed by vascular endothelial growth factor (VEGF) expression or tumor CD31-positive microvessel density (MVD). Tumor VEGF expression is predictive of poor prognosis, and chemotherapy can affect the selection of angiogenic pattern. The aim of the study was to investigate the clinical and prognostic significance of VEGF and CD31 in osteosarcoma, both at diagnosis and after neoadjuvant chemotherapy, in order to identify a potential role of chemotherapy in angiogenic phenotype.</p> <p>Methods</p> <p>A retrospective analysis was performed on 16 patients with high grade osteosarcoma. In each case archival pre-treatment biopsy tissue and post-chemotherapy tumor specimens were immunohistochemically stained against CD31 and VEGF, as markers of angiogenic proliferation both in newly diagnosed primary osteosarcoma and after multidrug chemotherapy including high-dose methotrexate (HDMTX). The correlation between clinicopathological parameters and the degree of tumor VEGF and CD31 expression was statistically assessed using the χ<sup>2 </sup>test verified with Yates' test for comparison of two groups. Significance was set at <it>p </it>< 0,05.</p> <p>Results</p> <p>Expression of VEGF was positive in 11 cases/16 of cases at diagnosis. Moreover, 8 cases/16 untreated osteosarcomas were CD31-negative, but the other 8 showed an high expression of CD31. VEGF expression in viable tumor cells after neoadjuvant chemotherapy was observed in all cases; in particular, there was an increased VEGF expression (post-chemotherapy VEGF - biopsy VEGF) in 11 cases/16. CD31 expression increased in 11 cases/16 and decreased in 3 cases after chemotherapy. The data relating to the change in staining following chemotherapy appear statistically significant for VEGF expression (<it>p </it>< 0,05), but not for CD31 (<it>p </it>> 0,05).</p> <p>Conclusions</p> <p>Even if the study included few patients, these results confirm that VEGF and CD31 expression is affected by multidrug chemotherapy including HDMTX. The expression of angiogenic factors that increase microvessel density (MVD) can contribute to the penetration of chemotherapeutic drugs into the tumor in the adjuvant stage of treatment. So VEGF could have a paradoxical effect: it is associated with a poor outcome but it could be a potential target for anti-angiogenic therapy.</p

    Recombinant human VEGF165b protein is an effective anti-cancer agent in mice

    Full text link
    Tumour growth is dependent on angiogenesis, the key mediator of which is vascular endothelial growth factor-A (VEGF-A). VEGF-A exists as two families of alternatively spliced isoforms - pro-angiogenic VEGF(xxx) generated by proximal, and anti-angiogenic VEGF(xxx)b by distal splicing of exon 8. VEGF(165)b inhibits angiogenesis and is downregulated in tumours. Here, we show for the first time that administration of recombinant human VEGF(165)b inhibits colon carcinoma tumour growth and tumour vessel density in nude mice, with a terminal plasma half-life of 6.2 h and directly inhibited angiogenic parameters (endothelial sprouting, orientation and structure formation) in vitro. Intravenous injection of (125)I-VEGF(165)b demonstrated significant tumour uptake lasting at least 24 h. No adverse effects on liver function or haemodynamics were observed. These results indicate that injected VEGF(165)b was taken up into the tumour as an effective anti-angiogenic cancer therapy, and provide proof of principle for the development of this anti-angiogenic growth factor splice isoform as a novel cancer therapy

    VEGF(121)b, a new member of the VEGF(xxx)b family of VEGF-A splice isoforms, inhibits neovascularisation and tumour growth in vivo

    Get PDF
    BACKGROUND: The key mediator of new vessel formation in cancer and other diseases is VEGF-A. VEGF-A exists as alternatively spliced isoforms - the pro-angiogenic VEGF(xxx) family generated by exon 8 proximal splicing, and a sister family, termed VEGF(xxx)b, exemplified by VEGF(165)b, generated by distal splicing of exon 8. However, it is unknown whether this anti-angiogenic property of VEGF(165)b is a general property of the VEGF(xxx)b family of isoforms. METHODS: The mRNA and protein expression of VEGF(121)b was studied in human tissue. The effect of VEGF(121)b was analysed by saturation binding to VEGF receptors, endothelial migration, apoptosis, xenograft tumour growth, pre-retinal neovascularisation and imaging of biodistribution in tumour-bearing mice with radioactive VEGF(121)b. RESULTS: The existence of VEGF(121)b was confirmed in normal human tissues. VEGF(121)b binds both VEGF receptors with similar affinity as other VEGF isoforms, but inhibits endothelial cell migration and is cytoprotective to endothelial cells through VEGFR-2 activation. Administration of VEGF(121)b normalised retinal vasculature by reducing both angiogenesis and ischaemia. VEGF(121)b reduced the growth of xenografted human colon tumours in association with reduced microvascular density, and an intravenous bolus of VEGF(121)b is taken up into colon tumour xenografts. CONCLUSION: Here we identify a second member of the family, VEGF(121)b, with similar properties to those of VEGF(165)b, and underline the importance of the six amino acids of exon 8b in the anti-angiogenic activity of the VEGF(xxx)b isoforms
    corecore