1,589,631 research outputs found

    Thermodynamics of black holes in finite boxes

    Full text link
    We analyze the thermodynamical behavior of black holes in closed finite boxes. First the black hole mass evolution is analyzed in an initially empty box. Using the conservation of the energy and the Hawking evaporation flux, we deduce a minimal volume above which one black hole can loss all of its mass to the box, a result which agrees with the previous analysis made by Page. We then obtain analogous results using a box initially containing radiation, allowed to be absorbed by the black hole. The equilibrium times and masses are evaluated and their behavior discussed to highlight some interesting features arising. These results are generalized to NN black holes + thermal radiation. Using physically simple arguments, we prove that these black holes achieve the same equilibrium masses (even that the initial masses were different). The entropy of the system is used to obtain the dependence of the equilibrium mass on the box volume, number of black holes and the initial radiation. The equilibrium mass is shown to be proportional to a {\it positive} power law of the effective volume (contrary to naive expectations), a result explained in terms of the detailed features of the system. The effect of the reflection of the radiation on the box walls which comes back into the black hole is explicitly considered. All these results (some of them counter-intuitive) may be useful to formulate alternative problems in thermodynamic courses for graduate and advanced undergraduate students. A handful of them are suggested in the Appendix.Comment: RevTex file, 2 .ps figures. Submitted to AmJPhy

    The supermembrane revisited

    Full text link
    The M2-brane is studied from the perspective of superembeddings. We review the derivation of the M2-brane dynamics and the supergravity constraints from the standard superembedding constraint and we discuss explicitly the induced d=3, N=8 superconformal geometry on the worldvolume. We show that the gauged supermembrane, for a target space with a U(1) isometry, is the standard D2-brane in a type IIA supergravity background. In particular, the D2-brane action, complete with the Dirac-Born-Infeld term, arises from the gauged Wess-Zumino worldvolume 4-form via the brane action principle. The discussion is extended to the massive D2-brane considered as a gauged supermembrane in a massive D=11 superspace background. Type IIA supergeometry is derived using Kaluza-Klein techniques in superspace.Comment: Latex, 46 pages, clarifying remarks and references adde

    Effective energy-momentum tensor of strong-field QED with unstable vacuum

    Full text link
    We study the influence of a vacuum instability on the effective energy-momentum tensor (EMT) of QED, in the presence of a quasiconstant external electric field, by means of the relevant Green functions. In the case when the initial vacuum, |0,in>, differs essentially from the final vacuum, |0,out>, we find explicitly and compared both the vacuum average value of EMT, , and the matrix element, . In the course of the calculation we solve the problem of the special divergences connected with infinite time T of acting of the constant electric field. The EMT of pair created by an electric field from the initial vacuum is presented. The relations of the obtained expressions to the Euler-Heisenberg's effective action are established.Comment: 8 pages, 1 figure, Talk given at "QFEXT'05", the 7-th workshop on quantum field theory under the influence of external conditions, Barcelona, Spain, Sept. 5-9, 2005; minor misprints correcte

    Stabilization of the coupled pendula chain under parametric PT-symmetric driving force

    Full text link
    We consider a chain of coupled pendula pairs, where each pendulum is connected to the nearest neighbors in the longitudinal and transverse directions. The common strings in each pair are modulated periodically by an external force. In the limit of small coupling and near the 1:2 parametric resonance, we derive a novel system of coupled PT-symmetric discrete nonlinear Schrodinger equation, which has Hamiltonian symmetry but has no gauge symmetry. By using the conserved energy, we find the parameter range for the linear and nonlinear stability of the zero equilibrium. Numerical experiments illustrate how destabilization of the zero equilibrium takes place when the stability constraints are not satisfied. The central pendulum excites nearest pendula and this process continues until a dynamical equilibrium is reached where each pendulum in the chain oscillates at a finite amplitude.Comment: 13 pages, 6 figure

    Light and stable triplet bipolarons on square and triangular lattices

    Get PDF
    We compute the properties of singlet and triplet bipolarons on two-dimensional lattices using the continuous time quantum Monte Carlo algorithm. Properties of the bipolaron including the total energy, inverse mass, bipolaron radius and number of phonons associated with the bipolaron demonstrate the qualitative difference between models of electron phonon interaction with long-range interaction (screened Fr\"ohlich) and those with purely local (Holstein) interaction. A major result of our survey of the parameter space is the existence of extra-light hybrid singlet bipolarons consisting of an on-site and an off-site component on both square and triangular lattices. We also compute triplet properties of the bipolarons and the pair dispersion. For pair momenta on the edge of the Brillouin zone of the triangular lattice, we find that triplet states are more stable than singlets

    Searching for annihilation radiation from SN 1006 with SPI on INTEGRAL

    Get PDF
    Historical Type Ia supernovae are a leading candidate for the source of positrons observed through their diffuse annihilation emission in the Galaxy. However, search for annihilation emission from individual Type Ia supernovae has not been possible before the improved sensitivity of \integral. The total 511 keV annihilation flux from individual SNe Ia, as well as their contribution to the overall diffuse emission, depends critically on the escape fraction of positrons produced in 56^{56}Co decays. Late optical light curves suggest that this fraction may be as high as 5%. We searched for positron annihilation radiation from the historical Type Ia supernova SN 1006 using the SPI instrument on \integral. We did not detect significant 511 keV line emission, with a 3σ\sigma flux upper limit of 0.59 x 10−4^{-4} ergs cm^-2 s^-1 for \wsim 1 Msec exposure time, assuming a FWHM of 2.5 keV. This upper limit corresponds to a 7.5% escape fraction, 50% higher than the expected 5% escape scenario, and rules out the possibility that Type Ia supernovae produce all of the positrons in the Galaxy (~ 12% escape fraction), if the mean positron lifetime is less than 105^{5} years. Future observations with \integral will provide stronger limits on the escape fraction of positrons, the mean positron lifetime, and the contribution of Type Ia supernovae to the overall positron content of the Galaxy.Comment: 3 pages, 2 figures, accepted for publication in ApJ

    Large Radio Telescopes for Anomalous Microwave Emission Observations

    Full text link
    We discuss in this paper the problem of the Anomalous Microwave Emission (AME) in the light of ongoing or future observations to be performed with the largest fully steerable radio telescope in the world. High angular resolution observations of the AME will enable astronomers to drastically improve the knowledge of the AME mechanisms as well as the interplay between the different constituents of the interstellar medium in our galaxy. Extragalactic observations of the AME have started as well, and high resolution is even more important in this kind of observations. When cross-correlating with IR-dust emission, high angular resolution is also of fundamental importance in order to obtain unbiased results. The choice of the observational frequency is also of key importance in continuum observation. We calculate a merit function that accounts for the signal-to-noise ratio (SNR) in AME observation given the current state-of-the-art knowledge and technology. We also include in our merit functions the frequency dependence in the case of multifrequency observations. We briefly mention and compare the performance of four of the largest radiotelescopes in the world and hope the observational programs in each of them will be as intense as possible.Comment: Review accepted for publication in Advances in Astronom

    London's limit for the lattice superconductor

    Full text link
    A stability problem for the current state of the strong coupling superconductor has been considered within the lattice Ginzburg-Landau model. The critical current problem for a thin superconductor film is solved within the London limit taking into account the crystal lattice symmetry. The current dependence on the order parameter modulus is computed for the superconductor film for various coupling parameter magnitudes. The field penetration problem is shown to be described in this case by the one-dimensional sine-Gordon equation. The field distribution around the vortex is described at the same time by the two-dimensional elliptic sine-Gordon equation.Comment: 7 pages, 3 figures, Revtex4, mostly technical correction; extended abstrac
    • …
    corecore