66 research outputs found

    Catheter-related bloodstream infection caused by Enterococcus spp.

    Get PDF
    AbstractThe role of Enterococcus spp. as a cause of catheter-related bloodstream infections (CR-BSI) is almost unexplored. We assessed the incidence and clinical characteristics of enterococcal CR-BSI (ECR-BSI) over an 8-year period in our hospital. We performed a retrospective study (January 2003 to December 2010) in a large teaching institution. We recorded the incidence, and the microbiological and clinical data from patients with ECR-BSI. The incidence per 10 000 admissions for enterococcal BSI and ECR-BSI was 25 and 1.7, respectively. ECR-BSI was the fourth leading cause of CR-BSI in our institution (6%). A total of 75 episodes of ECR-BSI were detected in 73 patients (6% of all enterococcal BSI). The incidence of ECR-BSI increased by 17% annually (95% CI 19.0–21.0%) during the study period. Nineteen percent of ECR-BSI episodes were polymicrobial. Overall mortality was 33%. ECR-BSI is an emerging and increasingly common entity with a high mortality. This finding should be taken into account when selecting empirical treatment for presumptive CR-BSI

    Alternative networks: toward global access to the Internet for all

    Get PDF
    It is often said that the Internet is ubiquitous in our daily lives, but this holds true only for those who can easily access it. In fact, billions of people are still digitally disconnected, as bringing connectivity to certain zones does not make a good business case. The only solution for these unsatisfied potential users is to directly undertake the building of the infrastructure required to obtaining access to the Internet, typically forming groups in order to share the corresponding cost. This article presents a global classification and a summary of the main characteristics of different Alternative Network deployments that have arisen in recent years with an aim to provide Internet services in places where mainstream network deployments do not exist or are not adequate solutions. The Global Access to the Internet for All Research Group of the Internet Research Task Force, where all authors actively participate, is interested in documenting these emerging deployments. As an outcome of this work, a classification has converged by consensus, where five criteria have been identified and, based on them, four different types of Alternative Networks have been identified and described with real-world examples. Such a classification is useful for a deeper understanding of the common characteristics behind existing and emerging Alternative Networks

    How to: prophylactic interventions for prevention of Clostridioides difficile infection

    Get PDF
    Background: Clostridioides difficile infection (CDI) remains the leading cause of healthcare-associated diarrhoea, despite existing guidelines for infection control measures and antimicrobial stewardship. The high associated health and economic burden of CDI calls for novel strategies to prevent the development and spread of CDI in susceptible patients. Objectives: We aim to review CDI prophylactic treatment strategies and their implementation in clinical practice. Sources: We searched PubMed, Embase, Emcare, Web of Science, and the COCHRANE Library databases to identify prophylactic interventions aimed at prevention of CDI. The search was restricted to articles published in English since 2012. Content: A toxin-based vaccine candidate is currently being investigated in a phase III clinical trial. However, a recent attempt to develop a toxin-based vaccine has failed. Conventional probiotics have not yet proved to be an effective strategy for prevention of CDI. New promising microbiota-based interventions that bind and inactivate concomitantly administered antibiotics, such as ribaxamase and DAV-132, have been developed. Prophylaxis of CDI with C. difficile antibiotics should not be performed routinely and should be considered only for secondary prophylaxis in very selected patients who are at the highest imminent risk for recurrent CDI (R-CDI) after a thorough evaluation. Faecal microbiota transplantation (FMT) has proved to be a very effective treatment for patients with multiple recurrences. Bezlotoxumab provides protection against R-CDI, mainly in patients with primary episodes and a high risk of relapse. Implications: There are no proven effective, evidenced-based prophylaxis options for primary CDI. As for secondary prevention, FMT is considered the option of choice in patients with multiple recurrences. Bezlotoxumab can be added to standard treatment for patients at high risk for R-CDI. The most promising strategies are those aimed at reducing changes in intestinal microbiota and development of a new effective non-toxin-based vaccine. Elena Reigadas, Clin Microbiol Infect 2021;27:1777 (c) 2021 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc

    Prediction of poor outcome in clostridioides difficile infection: A multicentre external validation of the toxin B amplification cycle

    Get PDF
    Producción CientíficaClassification of patients according to their risk of poor outcomes in Clostridioides difficile infection (CDI) would enable implementation of costly new treatment options in a subset of patients at higher risk of poor outcome. In a previous study, we found that low toxin B amplification cycle thresholds (Ct) were independently associated with poor outcome CDI. Our objective was to perform a multicentre external validation of a PCR-toxin B Ct as a marker of poor outcome CDI. We carried out a multicentre study (14 hospitals) in which the characteristics and outcome of patients with CDI were evaluated. A subanalysis of the results of the amplification curve of real-time PCR gene toxin B (XpertTM C. difficile) was performed. A total of 223 patients were included. The median age was 73.0 years, 50.2% were female, and the median Charlson index was 3.0. The comparison of poor outcome and non–poor outcome CDI episodes revealed, respectively, the following results: median age (years), 77.0 vs 72.0 (p = 0.009); patients from nursing homes, 24.4% vs 10.8% (p = 0.039); median leukocytes (cells/μl), 10,740.0 vs 8795.0 (p = 0.026); and median PCR-toxin B Ct, 23.3 vs 25.4 (p = 0.004). Multivariate analysis showed that a PCR-toxin B Ct cut-off <23.5 was significantly and independently associated with poor outcome CDI (p = 0.002; OR, 3.371; 95%CI, 1.565–7.264). This variable correctly classified 68.5% of patients. The use of this microbiological marker could facilitate early selection of patients who are at higher risk of poor outcome and are more likely to benefit from newer and more costly therapeutic options

    Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma

    Get PDF
    Objectives The neurological disorders in HIV-1-infected patients remain prevalent. The HIV-1 resistance in plasma and CSF was compared in patients with neurological disorders in a multicentre study. Methods Blood and CSF samples were collected at time of neurological disorders for 244 patients. The viral loads were >50 copies/mL in both compartments and bulk genotypic tests were realized. Results On 244 patients, 89 and 155 were antiretroviral (ARV) naive and ARV treated, respectively. In ARV-naive patients, detection of mutations in CSF and not in plasma were reported for the reverse transcriptase (RT) gene in 2/89 patients (2.2%) and for the protease gene in 1/89 patients (1.1%). In ARV-treated patients, 19/152 (12.5%) patients had HIV-1 mutations only in the CSF for the RT gene and 30/151 (19.8%) for the protease gene. Two mutations appeared statistically more prevalent in the CSF than in plasma: M41L (P = 0.0455) and T215Y (P = 0.0455). Conclusions In most cases, resistance mutations were present and similar in both studied compartments. However, in 3.4% of ARV-naive and 8.8% of ARV-treated patients, the virus was more resistant in CSF than in plasma. These results support the need for genotypic resistance testing when lumbar puncture is performe

    Clostridium difficile infection.

    Get PDF
    Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota

    The role of unintegrated DNA in HIV infection

    Get PDF
    Integration of the reverse transcribed viral genome into host chromatin is the hallmark of retroviral replication. Yet, during natural HIV infection, various unintegrated viral DNA forms exist in abundance. Though linear viral cDNA is the precursor to an integrated provirus, increasing evidence suggests that transcription and translation of unintegrated DNAs prior to integration may aid productive infection through the expression of early viral genes. Additionally, unintegrated DNA has the capacity to result in preintegration latency, or to be rescued and yield productive infection and so unintegrated DNA, in some circumstances, may be considered to be a viral reservoir. Recently, there has been interest in further defining the role and function of unintegrated viral DNAs, in part because the use of anti-HIV integrase inhibitors leads to an abundance of unintegrated DNA, but also because of the potential use of non-integrating lentiviral vectors in gene therapy and vaccines. There is now increased understanding that unintegrated viral DNA can either arise from, or be degraded through, interactions with host DNA repair enzymes that may represent a form of host antiviral defence. This review focuses on the role of unintegrated DNA in HIV infection and additionally considers the potential implications for antiviral therapy

    An Internal Ribosome Entry Site Directs Translation of the 39-Gene from Pelargonium Flower Break Virus Genomic RNA: Implications for Infectivity

    Get PDF
    [EN] Pelargonium flower break virus (PFBV, genus Carmovirus) has a single-stranded positive-sense genomic RNA (gRNA) which contains five ORFs. The two 59-proximal ORFs encode the replicases, two internal ORFs encode movement proteins, and the 39-proximal ORF encodes a polypeptide (p37) which plays a dual role as capsid protein and as suppressor of RNA silencing. Like other members of family Tombusviridae, carmoviruses express ORFs that are not 59-proximal from subgenomic RNAs. However, in one case, corresponding to Hisbiscus chlorotic ringspot virus, it has been reported that the 39-proximal gene can be translated from the gRNA through an internal ribosome entry site (IRES). Here we show that PFBV also holds an IRES that mediates production of p37 from the gRNA, raising the question of whether this translation strategy may be conserved in the genus. The PFBV IRES was functional both in vitro and in vivo and either in the viral context or when inserted into synthetic bicistronic constructs. Through deletion and mutagenesis studies we have found that the IRES is contained within a 80 nt segment and have identified some structural traits that influence IRES function. Interestingly, mutations that diminish IRES activity strongly reduced the infectivity of the virus while the progress of the infection was favoured by mutations potentiating such activity. These results support the biological significance of the IRES-driven p37 translation and suggest that production of the silencing suppressor from the gRNA might allow the virus to early counteract the defence response of the host, thus facilitating pathogen multiplication and spread.This research was supported by grants BFU2006-11230 and BFU2009-11699 from the Spanish Ministerio de Ciencia e Innovacion (MICINN) and by grants ACOM/2006/210 and ACOMP/2009/040 (to CH) and GVPRE/2008/121 (to OF-M) from the Generalitat Valenciana. The latter was the recipient of an I3P postdoctoral contract from the Spanish Consejo Superior de Investigaciones Cientificas and an additional contract from MICINN. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Fernandez Miragall, O.; Hernandez Fort, C. (2011). An Internal Ribosome Entry Site Directs Translation of the 39-Gene from Pelargonium Flower Break Virus Genomic RNA: Implications for Infectivity. PLoS ONE. 6(7):22617-22617. https://doi.org/10.1371/journal.pone.0022617S226172261767Gallie, D. R. (1996). Translational control of cellular and viral mRNAs. Plant Molecular Biology, 32(1-2), 145-158. doi:10.1007/bf00039381Kozak, M. (2002). Pushing the limits of the scanning mechanism for initiation of translation. Gene, 299(1-2), 1-34. doi:10.1016/s0378-1119(02)01056-9Sachs, A. B., Sarnow, P., & Hentze, M. W. (1997). Starting at the Beginning, Middle, and End: Translation Initiation in Eukaryotes. Cell, 89(6), 831-838. doi:10.1016/s0092-8674(00)80268-8Kozak, M. (1992). Regulation of Translation in Eukaryotic Systems. Annual Review of Cell Biology, 8(1), 197-225. doi:10.1146/annurev.cb.08.110192.001213Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell, 136(4), 731-745. doi:10.1016/j.cell.2009.01.042F�tterer, J., & Hohn, T. (1996). Translation in plants-rules and exceptions. Plant Molecular Biology, 32(1-2), 159-189. doi:10.1007/bf00039382Gale, M., Tan, S.-L., & Katze, M. G. (2000). Translational Control of Viral Gene Expression in Eukaryotes. Microbiology and Molecular Biology Reviews, 64(2), 239-280. doi:10.1128/mmbr.64.2.239-280.2000Kozak, M. (2001). Constraints on reinitiation of translation in mammals. Nucleic Acids Research, 29(24), 5226-5232. doi:10.1093/nar/29.24.5226Pelletier, J., & Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 334(6180), 320-325. doi:10.1038/334320a0Mokrejš, M., Mašek, T., Vopálenský, V., Hlubuček, P., Delbos, P., & Pospíšek, M. (2009). IRESite—a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Research, 38(suppl_1), D131-D136. doi:10.1093/nar/gkp981Basso, J., Dallaire, P., Charest, P. J., Devantier, Y., & Laliberte, J.-F. (1994). Evidence for an Internal Ribosome Entry Site Within the 5’ Non-translated Region of Turnip Mosaic Potyvirus RNA. Journal of General Virology, 75(11), 3157-3165. doi:10.1099/0022-1317-75-11-3157Levis, C., & Astier-Manifacier, S. (1993). The 5′ untranslated region of PVY RNA, even located in an internal position, enables initiation of translation. Virus Genes, 7(4), 367-379. doi:10.1007/bf01703392Karetnikov, A., & Lehto, K. (2007). The RNA2 5’ leader of Blackcurrant reversion virus mediates efficient in vivo translation through an internal ribosomal entry site mechanism. Journal of General Virology, 88(1), 286-297. doi:10.1099/vir.0.82307-0Ivanov, P. A., Karpova, O. V., Skulachev, M. V., Tomashevskaya, O. L., Rodionova, N. P., Dorokhov, Y. L., & Atabekov, J. G. (1997). A Tobamovirus Genome That Contains an Internal Ribosome Entry Site Functionalin Vitro. Virology, 232(1), 32-43. doi:10.1006/viro.1997.8525Skulachev, M. V., Ivanov, P. A., Karpova, O. V., Korpela, T., Rodionova, N. P., Dorokhov, Y. L., & Atabekov, J. G. (1999). Internal Initiation of Translation Directed by the 5′-Untranslated Region of the Tobamovirus Subgenomic RNA I2. Virology, 263(1), 139-154. doi:10.1006/viro.1999.9928Jaag, H. M., Kawchuk, L., Rohde, W., Fischer, R., Emans, N., & Prufer, D. (2003). An unusual internal ribosomal entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein. Proceedings of the National Academy of Sciences, 100(15), 8939-8944. doi:10.1073/pnas.1332697100Balvay, L., Rifo, R. S., Ricci, E. P., Decimo, D., & Ohlmann, T. (2009). Structural and functional diversity of viral IRESes. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1789(9-10), 542-557. doi:10.1016/j.bbagrm.2009.07.005Kneller, E. L. P., Rakotondrafara, A. M., & Miller, W. A. (2006). Cap-independent translation of plant viral RNAs. Virus Research, 119(1), 63-75. doi:10.1016/j.virusres.2005.10.010Rico, P., & Hern�ndez, C. (2004). Complete nucleotide sequence and genome organization of Pelargonium flower break virus. Archives of Virology, 149(3), 641-651. doi:10.1007/s00705-003-0231-5Martinez-Turino, S., & Hernandez, C. (2010). Identification and characterization of RNA-binding activity in the ORF1-encoded replicase protein of Pelargonium flower break virus. Journal of General Virology, 91(12), 3075-3084. doi:10.1099/vir.0.023093-0Martínez-Turiño, S., & Hernández, C. (2011). A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif. Virology, 413(2), 310-319. doi:10.1016/j.virol.2011.03.001Martinez-Turino, S., & Hernandez, C. (2009). Inhibition of RNA silencing by the coat protein of Pelargonium flower break virus: distinctions from closely related suppressors. Journal of General Virology, 90(2), 519-525. doi:10.1099/vir.0.006098-0Rico, P., & Hernández, C. (2009). Characterization of the subgenomic RNAs produced by Pelargonium flower break virus: Identification of two novel RNAs species. Virus Research, 142(1-2), 100-107. doi:10.1016/j.virusres.2009.01.018Koh, D. C.-Y., Wong, S.-M., & Liu, D. X. (2003). Synergism of the 3′-Untranslated Region and an Internal Ribosome Entry Site Differentially Enhances the Translation of a Plant Virus Coat Protein. Journal of Biological Chemistry, 278(23), 20565-20573. doi:10.1074/jbc.m210212200Hellen, C. U. T. (2001). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes & Development, 15(13), 1593-1612. doi:10.1101/gad.891101Martínez-Salas, E. (1999). Internal ribosome entry site biology and its use in expression vectors. Current Opinion in Biotechnology, 10(5), 458-464. doi:10.1016/s0958-1669(99)00010-5Dobrikova, E., Florez, P., Bradrick, S., & Gromeier, M. (2003). Activity of a type 1 picornavirus internal ribosomal entry site is determined by sequences within the 3’ nontranslated region. Proceedings of the National Academy of Sciences, 100(25), 15125-15130. doi:10.1073/pnas.2436464100Belsham, G. J. (2009). Divergent picornavirus IRES elements. Virus Research, 139(2), 183-192. doi:10.1016/j.virusres.2008.07.001Fernández-Miragall, O., Quinto, S. L. de, & Martínez-Salas, E. (2009). Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Research, 139(2), 172-182. doi:10.1016/j.virusres.2008.07.009Pestova, T. V., Kolupaeva, V. G., Lomakin, I. B., Pilipenko, E. V., Shatsky, I. N., Agol, V. I., & Hellen, C. U. T. (2001). Molecular mechanisms of translation initiation in eukaryotes. Proceedings of the National Academy of Sciences, 98(13), 7029-7036. doi:10.1073/pnas.111145798FERNANDEZ-MIRAGALL, O. (2003). Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA, 9(11), 1333-1344. doi:10.1261/rna.5950603ROBERTSON, M. E. M., SEAMONS, R. A., & BELSHAM, G. J. (1999). A selection system for functional internal ribosome entry site (IRES) elements: Analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA, 5(9), 1167-1179. doi:10.1017/s1355838299990301Dorokhov, Y. L., Skulachev, M. V., Ivanov, P. A., Zvereva, S. D., Tjulkina, L. G., Merits, A., … Atabekov, J. G. (2002). Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proceedings of the National Academy of Sciences, 99(8), 5301-5306. doi:10.1073/pnas.082107599Xia, X., & Holcik, M. (2009). Strong Eukaryotic IRESs Have Weak Secondary Structure. PLoS ONE, 4(1), e4136. doi:10.1371/journal.pone.0004136Lu, J., Zhang, J., Wang, X., Jiang, H., Liu, C., & Hu, Y. (2006). In vitro and in vivo identification of structural and sequence elements in the 5’ untranslated region of Ectropis obliqua picorna-like virus required for internal initiation. Journal of General Virology, 87(12), 3667-3677. doi:10.1099/vir.0.82090-0Yang, L. J., Hidaka, M., Sonoda, J., Masaki, H., & Uozumi, T. (1997). Mutational Analysis of the Potato Virus Y 5′ Untranslated Region for Alteration in Translational Enhancement in Tobacco Protoplasts. Bioscience, Biotechnology, and Biochemistry, 61(12), 2131-2133. doi:10.1271/bbb.61.2131BERGAMINI, G., PREISS, T., & HENTZE, M. W. (2000). Picornavirus IRESes and the poly(A) tail jointly promote cap-independent translation in a mammalian cell-free system. RNA, 6(12), 1781-1790. doi:10.1017/s1355838200001679Bradrick, S. S. (2006). The hepatitis C virus 3’-untranslated region or a poly(A) tract promote efficient translation subsequent to the initiation phase. Nucleic Acids Research, 34(4), 1293-1303. doi:10.1093/nar/gkl019Lopez de Quinto, S. (2002). IRES-driven translation is stimulated separately by the FMDV 3’-NCR and poly(A) sequences. Nucleic Acids Research, 30(20), 4398-4405. doi:10.1093/nar/gkf569Song, Y., Friebe, P., Tzima, E., Junemann, C., Bartenschlager, R., & Niepmann, M. (2006). The Hepatitis C Virus RNA 3’-Untranslated Region Strongly Enhances Translation Directed by the Internal Ribosome Entry Site. Journal of Virology, 80(23), 11579-11588. doi:10.1128/jvi.00675-06Koh, D. C.-Y., Liu, D. X., & Wong, S.-M. (2002). A Six-Nucleotide Segment within the 3’ Untranslated Region of Hibiscus Chlorotic Ringspot Virus Plays an Essential Role in Translational Enhancement. Journal of Virology, 76(3), 1144-1153. doi:10.1128/jvi.76.3.1144-1153.2002Stupina, V. A., Meskauskas, A., McCormack, J. C., Yingling, Y. G., Shapiro, B. A., Dinman, J. D., & Simon, A. E. (2008). The 3’ proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits. RNA, 14(11), 2379-2393. doi:10.1261/rna.1227808Truniger, V., Nieto, C., González-Ibeas, D., & Aranda, M. (2008). Mechanism of plant eIF4E-mediated resistance against a Carmovirus (Tombusviridae): cap-independent translation of a viral RNA controlledin cisby an (a)virulence determinant. The Plant Journal, 56(5), 716-727. doi:10.1111/j.1365-313x.2008.03630.xMiller, W. A., Wang, Z., & Treder, K. (2007). The amazing diversity of cap-independent translation elements in the 3′-untranslated regions of plant viral RNAs. Biochemical Society Transactions, 35(6), 1629-1633. doi:10.1042/bst0351629Miller, W. A., & White, K. A. (2006). Long-Distance RNA-RNA Interactions in Plant Virus Gene Expression and Replication. Annual Review of Phytopathology, 44(1), 447-467. doi:10.1146/annurev.phyto.44.070505.143353Koh, D. C.-Y., Wang, X., Wong, S.-M., & Liu, D. X. (2006). Translation initiation at an upstream CUG codon regulates the expression of Hibiscus chlorotic ringspot virus coat protein. Virus Research, 122(1-2), 35-44. doi:10.1016/j.virusres.2006.06.008Castaño, A., Ruiz, L., & Hernández, C. (2009). Insights into the translational regulation of biologically active open reading frames of Pelargonium line pattern virus. Virology, 386(2), 417-426. doi:10.1016/j.virol.2009.01.017Fraser, C. S., & Doudna, J. A. (2006). Structural and mechanistic insights into hepatitis C viral translation initiation. Nature Reviews Microbiology, 5(1), 29-38. doi:10.1038/nrmicro1558LÓPEZ-LASTRA, M., RIVAS, A., & BARRÍA, M. I. (2005). Protein synthesis in eukaryotes: The growing biological relevance of cap-independent translation initiation. Biological Research, 38(2-3). doi:10.4067/s0716-97602005000200003Pacheco, A., & Martinez-Salas, E. (2010). Insights into the Biology of IRES Elements through Riboproteomic Approaches. Journal of Biomedicine and Biotechnology, 2010, 1-12. doi:10.1155/2010/458927Bernstein, J., Sella, O., Le, S.-Y., & Elroy-Stein, O. (1997). PDGF2/c-sismRNA Leader Contains a Differentiation-linked Internal Ribosomal Entry Site (D-IRES). Journal of Biological Chemistry, 272(14), 9356-9362. doi:10.1074/jbc.272.14.9356Scheper, G. C., Voorma, H. O., & Thomas, A. A. M. (1994). Basepairing with 18S ribosomal RNA in internal initiation of translation. FEBS Letters, 352(3), 271-275. doi:10.1016/0014-5793(94)00975-9Dresios, J., Chappell, S. A., Zhou, W., & Mauro, V. P. (2005). An mRNA-rRNA base-pairing mechanism for translation initiation in eukaryotes. Nature Structural & Molecular Biology, 13(1), 30-34. doi:10.1038/nsmb1031Reigadas, S., Pacheco, A., Ramajo, J., de Quinto, S. L., & Martinez-Salas, E. (2005). Specific interference between two unrelated internal ribosome entry site elements impairs translation efficiency. FEBS Letters, 579(30), 6803-6808. doi:10.1016/j.febslet.2005.11.015Ishitani, M., Xiong, L., Stevenson, B., & Zhu, J. K. (1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. The Plant Cell, 9(11), 1935-1949. doi:10.1105/tpc.9.11.1935Knoester, M., van Loon, L. C., van den Heuvel, J., Hennig, J., Bol, J. F., & Linthorst, H. J. M. (1998). Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proceedings of the National Academy of Sciences, 95(4), 1933-1937. doi:10.1073/pnas.95.4.1933Mathews, D. H., Sabina, J., Zuker, M., & Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology, 288(5), 911-940. doi:10.1006/jmbi.1999.2700Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406-3415. doi:10.1093/nar/gkg59
    corecore