340 research outputs found
Selective interactions in trapped ions: state reconstruction and quantum logic
We propose the implementation of selective interactions of atom-motion
subspaces in trapped ions. These interactions yield resonant exchange of
population inside a selected subspace, leaving the others in a highly
dispersive regime. Selectivity allows us to generate motional Fock (and other
nonclassical) states with high purity out of a wide class of initial states,
and becomes an unconventional cooling mechanism when the ground state is
chosen. Individual population of number states can be distinctively measured,
as well as the motional Wigner function. Furthermore, a protocol for
implementing quantum logic through a suitable control of selective subspaces is
presented.Comment: 4 revtex4 pages and 2 eps figures. Submitted for publicatio
Guiding of Rydberg atoms in a high-gradient magnetic guide
We study the guiding of Rb 59D Rydberg atoms in a linear,
high-gradient, two-wire magnetic guide. Time delayed microwave ionization and
ion detection are used to probe the Rydberg atom motion. We observe guiding of
Rydberg atoms over a period of 5 ms following excitation. The decay time of the
guided atom signal is about five times that of the initial state. We attribute
the lifetime increase to an initial phase of -changing collisions and
thermally induced Rydberg-Rydberg transitions. Detailed simulations of Rydberg
atom guiding reproduce most experimental observations and offer insight into
the internal-state evolution
High-resolution antenna near-field imaging and sub-THz measurements with a small atomic vapor-cell sensing element
Atomic sensing and measurement of millimeter-wave (mmW) and THz electric
fields using quantum-optical EIT spectroscopy of Rydberg states in atomic
vapors has garnered significant interest in recent years towards the
development of atomic electric-field standards and sensor technologies. Here we
describe recent work employing small atomic vapor cell sensing elements for
near-field imaging of the radiation pattern of a K-band horn antenna at
13.49 GHz. We image fields at a spatial resolution of and measure
over a 72 to 240 V/m field range using off-resonance AC-Stark shifts of a
Rydberg resonance. The same atomic sensing element is used to measure sub-THz
electric fields at 255 GHz, an increase in mmW-frequency by more than one order
of magnitude. The sub-THz field is measured over a continuous 100 MHz
frequency band using a near-resonant mmW atomic transition
DC Electric Fields in Electrode-Free Glass Vapor Cell by Photoillumination
Rydberg-atom-enabled atomic vapor cell technologies show great potentials in
developing devices for quantum enhanced sensors. In this paper, we demonstrate
laser induced DC electric fields in an all-glass vapor cell without bulk or
thin film electrodes. The spatial field distribution is mapped by Rydberg
electromagnetically induced transparency spectroscopy. We explain the measured
with a boundary-value electrostatic model. This work may inspire new ideas for
DC electric field control in designing miniaturized atomic vapor cell devices.
Limitations and other charge effects are also discussed
Strong-driving-assisted multipartite entanglement in cavity QED
We propose a method of generating multipartite entanglement by considering
the interaction of a system of N two-level atoms in a cavity of high quality
factor with a strong classical driving field. It is shown that, with a
judicious choice of the cavity detuning and the applied coherent field
detuning, vacuum Rabi coupling produces a large number of important
multipartite entangled states. It is even possible to produce entangled states
involving different cavity modes. Tuning of parameters also permits us to
switch from Jaynes-Cummings to anti-Jaynes-Cummings like interaction.Comment: Last version with minor changes and added references. Accepted for
publication in Phys. Rev. Letter
Simple pressure-tuned Fabry–Pérot interferometer
A simple, compact and inexpensive pressure-tuned Fabry–Pérot interferometer is presented. It is used as a laser locking reference for optical frequencies where the use of an atomic reference is impractical. The scanning range is several GHz. Absolute positioning of the interferometer with an accuracy of 7 MHz7MHz rms over a range of 2 GHz2GHz is possible. The instrument is temperature stabilized and shows long-term drift of 16 MHz16MHz rms over 48 h48h.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87892/2/033105_1.pd
Wave Packet Echoes in the Motion of Trapped Atoms
We experimentally demonstrate and systematically study the stimulated revival
(echo) of motional wave packet oscillations. For this purpose, we prepare wave
packets in an optical lattice by non-adiabatically shifting the potential and
stimulate their reoccurence by a second shift after a variable time delay. This
technique, analogous to spin echoes, enables one even in the presence of strong
dephasing to determine the coherence time of the wave packets. We find that for
strongly bound atoms it is comparable to the cooling time and much longer than
the inverse of the photon scattering rate
- …