905 research outputs found

    Introduction to Quantum Error Correction

    Get PDF
    In this introduction we motivate and explain the ``decoding'' and ``subsystems'' view of quantum error correction. We explain how quantum noise in QIP can be described and classified, and summarize the requirements that need to be satisfied for fault tolerance. Considering the capabilities of currently available quantum technology, the requirements appear daunting. But the idea of ``subsystems'' shows that these requirements can be met in many different, and often unexpected ways.Comment: 44 pages, to appear in LA Science. Hyperlinked PDF at http://www.c3.lanl.gov/~knill/qip/ecprhtml/ecprpdf.pdf, HTML at http://www.c3.lanl.gov/~knill/qip/ecprhtm

    Using error correction to determine the noise model

    Full text link
    Quantum error correcting codes have been shown to have the ability of making quantum information resilient against noise. Here we show that we can use quantum error correcting codes as diagnostics to characterise noise. The experiment is based on a three-bit quantum error correcting code carried out on a three-qubit nuclear magnetic resonance (NMR) quantum information processor. Utilizing both engineered and natural noise, the degree of correlations present in the noise affecting a two-qubit subsystem was determined. We measured a correlation factor of c=0.5+/-0.2 using the error correction protocol, and c=0.3+/-0.2 using a standard NMR technique based on coherence pathway selection. Although the error correction method demands precise control, the results demonstrate that the required precision is achievable in the liquid-state NMR setting.Comment: 10 pages, 3 figures. Added discussion section, improved figure

    Multiqubit Spin

    Get PDF
    It is proposed that the state space of a quantum object with a complicated discrete spectrum can be used as a basis for multiqubit recording and processing of information in a quantum computer. As an example, nuclear spin 3/2 is considered. The possibilities of writing and reading two quantum bits of information, preparation of the initial state, implementation of the "rotation" and "controlled negation" operations, which are sufficient for constructing any algorithms, are demonstrated.Comment: 7 pages, PostScript, no figures; translation of Pis'ma Zh. Eksp. Teor. Fiz. 70, No. 1, pp. 59-63, 10 July 1999; (Submitted 29 April 1999; resubmitted 2 June 1999

    NMR GHZ

    Full text link
    We describe the creation of a Greenberger-Horne-Zeilinger (GHZ) state of the form |000>+|111> (three maximally entangled quantum bits) using Nuclear Magnetic Resonance (NMR). We have successfully carried out the experiment using the proton and carbon spins of trichloroethylene, and confirmed the result using state tomography. We have thus extended the space of entangled quantum states explored systematically to three quantum bits, an essential step for quantum computation.Comment: 4 pages in RevTex, 3 figures, the paper is also avalaible at http://qso.lanl.gov/qc
    • …
    corecore