354 research outputs found

    Casimir Densities for a Massive Fermionic Quantum Field in a Global Monopole Background with Spherical Boundary

    Full text link
    We investigate the vacuum expectation value of the energy-momentum tensor associated with a massive fermionic field obeying the MIT bag boundary condition on a spherical shell in the global monopole spacetime. The asymptotic behavior of the vacuum densities is investigated near the sphere center and surface, and at large distances from the sphere. In the limit of strong gravitational field corresponding to small values of the parameter describing the solid angle deficit in global monopole geometry, the sphere-induced expectation values are exponentially suppressed.Comment: 8 pages, 4 figures, 6th Alexander Friedmann International Seminar on Gravitation and Cosmolog

    Vacuum polarization by topological defects in de Sitter spacetime

    Full text link
    In this paper we investigate the vacuum polarization effects associated with a massive quantum scalar field in de Sitter spacetime in the presence of gravitational topological defects. Specifically we calculate the vacuum expectation value of the field square, . Because this investigation has been developed in a pure de Sitter space, here we are mainly interested on the effects induced by the presence of the defects.Comment: Talk presented at the 1st. Mediterranean Conference on Classical and Quantum Gravity (MCCQG

    Casimir effect in hemisphere capped tubes

    Full text link
    In this paper we investigate the vacuum densities for a massive scalar field with general curvature coupling in background of a (2+1)-dimensional spacetime corresponding to a cylindrical tube with a hemispherical cap. A complete set of mode functions is constructed and the positive-frequency Wightman function is evaluated for both the cylindrical and hemispherical subspaces. On the base of this, the vacuum expectation values of the field squared and energy-momentum tensor are investigated. The mean field squared and the normal stress are finite on the boundary separating two subspaces, whereas the energy density and the parallel stress diverge as the inverse power of the distance from the boundary. For a conformally coupled field, the vacuum energy density is negative on the cylindrical part of the space. On the hemisphere, it is negative near the top and positive close to the boundary. In the case of minimal coupling the energy density on the cup is negative. On the tube it is positive near the boundary and negative at large distances. Though the geometries of the subspaces are different, the Casimir pressures on the separate sides of the boundary are equal and the net Casimir force vanishes. The results obtained may be applied to capped carbon nanotubes described by an effective field theory in the long-wavelength approximation.Comment: 24 pages, 5 figure
    • 

    corecore