162 research outputs found

    Endothelial Progenitors Exist within the Kidney and Lung Mesenchyme

    Get PDF
    The renal endothelium has been debated as arising from resident hemangioblast precursors that transdifferentiate from the nephrogenic mesenchyme (vasculogenesis) and/or from invading vessels (angiogenesis). While the Foxd1-positive renal cortical stroma has been shown to differentiate into cells that support the vasculature in the kidney (including vascular smooth muscle and pericytes) it has not been considered as a source of endothelial cell progenitors. In addition, it is unclear if Foxd1-positive mesenchymal cells in other organs such as the lung have the potential to form endothelium. This study examines the potential for Foxd1-positive cells of the kidney and lung to give rise to endothelial progenitors. We utilized immunofluorescence (IF) and fluorescence-activated cell sorting (FACS) to co-label Foxd1-expressing cells (including permanently lineage-tagged cells) with endothelial markers in embryonic and postnatal mice. We also cultured FACsorted Foxd1-positive cells, performed in vitro endothelial cell tubulogenesis assays and examined for endocytosis of acetylated low-density lipoprotein (Ac-LDL), a functional assay for endothelial cells. Immunofluorescence and FACS revealed that a subset of Foxd1-positive cells from kidney and lung co-expressed endothelial cell markers throughout embryogenesis. In vitro, cultured embryonic Foxd1-positive cells were able to differentiate into tubular networks that expressed endothelial cell markers and were able to endocytose Ac-LDL. IF and FACS in both the kidney and lung revealed that lineage-tagged Foxd1-positive cells gave rise to a significant portion of the endothelium in postnatal mice. In the kidney, the stromal-derived cells gave rise to a portion of the peritubular capillary endothelium, but not of the glomerular or large vessel endothelium. These findings reveal the heterogeneity of endothelial cell lineages; moreover, Foxd1-positive mesenchymal cells of the developing kidney and lung are a source of endothelial progenitors that are likely critical to patterning the vasculature. Š 2013 Sims-Lucas et al

    A point mutation in the MyoD basic domain imparts c-Myc-like properties.

    Full text link

    Varied effect of fortification of kale sprouts with novel organic selenium compounds on the synthesis of sulphur and phenolic compounds in relation to cytotoxic, antioxidant and anti-inflammatory activity

    Get PDF
    Selenium deficiency in daily diet is a common problem in many countries, thus searching for new dietary sources of this trace element is an important scientific challenge. Selenium biofortified sprouts from Brassicaceae family are good candidates for new dietary selenium source, as they reveal one of the highest capability to synthesize and accumulate this element. As a part of this extensive search, the influence of novel selenium organic compounds on fortification of kale sprouts biological activity was investigated. The present study is focused on the evaluation of the influence of these compounds on the synthesis of glucosinolates, isothiocyanates, indoles and phenolic acids in kale sprouts, together with the determination of their impact on antioxidant, anti-inflammatory and cytotoxic activity on gastrointestinal, prostate, and thyroid normal and cancer cells. The present study yields the conclusion that fortification of kale sprouts with selenium organic compounds bearing benzoselenoate scaffold influences the production of isothiocyanates, phenolic acids, and enhances the antioxidant properties of fortified sprouts. Notably, fortification with compounds based on benzoselenoate scaffold display chemoprotective properties in various cancer types (gastric, thyroid, and prostate cancer). The present study can facilitate the design of future agrochemicals. Compounds bearing benzoselenoate scaffold or selenyl phenylpiperazine motif seem to be particularly promising for these purposes.This study was partly supported by Polish grants N42/DBS/000231 and N42/DBS/000167. The publication was created with the use of equipment’s (Biotek Synergy microplate reader and Dionex HPLC system) co-financed by the qLIFE Priority Research Area under the program “Excellence Initiative—Research University” (No. 06/IDUB/2019/94) at Jagiellonian University

    Mcl1 haploinsufficiency protects mice from Myc-induced acute myeloid leukemia

    Get PDF
    Antiapoptotic BCL2 family members have been implicated in the pathogenesis of acute myelogenous leukemia (AML), but the functional significance and relative importance of individual proteins (e.g., BCL2, BCL-XL, and myeloid cell leukemia 1 [MCL1]) remain poorly understood. Here, we examined the expression of BCL2, BCL-XL, and MCL1 in primary human hematopoietic subsets and leukemic blasts from AML patients and found that MCL1 transcripts were consistently expressed at high levels in all samples tested. Consistent with this, Mcl1 protein was also highly expressed in myeloid leukemic blasts in a mouse Myc-induced model of AML. We used this model to test the hypothesis that Mcl1 facilitates AML development by allowing myeloid progenitor cells to evade Myc-induced cell death. Indeed, activation of Myc for 7 days in vivo substantially increased myeloid lineage cell numbers, whereas hematopoietic stem, progenitor, and B-lineage cells were depleted. Furthermore, Mcl1 haploinsufficiency abrogated AML development. In addition, deletion of a single allele of Mcl1 from fully transformed AML cells substantially prolonged the survival of transplanted mice. Conversely, the rapid lethality of disease was restored by coexpression of Bcl2 and Myc in Mcl1-haploinsufficient cells. Together, these data demonstrate a critical and dose-dependent role for Mcl1 in AML pathogenesis in mice and suggest that MCL1 may be a promising therapeutic target in patients with de novo AML

    Mitochondrial Structure, Function and Dynamics Are Temporally Controlled by c-Myc

    Get PDF
    Although the c-Myc (Myc) oncoprotein controls mitochondrial biogenesis and multiple enzymes involved in oxidative phosphorylation (OXPHOS), the coordination of these events and the mechanistic underpinnings of their regulation remain largely unexplored. We show here that re-expression of Myc in myc−/− fibroblasts is accompanied by a gradual accumulation of mitochondrial biomass and by increases in membrane polarization and mitochondrial fusion. A correction of OXPHOS deficiency is also seen, although structural abnormalities in electron transport chain complexes (ETC) are not entirely normalized. Conversely, the down-regulation of Myc leads to a gradual decrease in mitochondrial mass and a more rapid loss of fusion and membrane potential. Increases in the levels of proteins specifically involved in mitochondrial fission and fusion support the idea that Myc affects mitochondrial mass by influencing both of these processes, albeit favoring the latter. The ETC defects that persist following Myc restoration may represent metabolic adaptations, as mitochondrial function is re-directed away from producing ATP to providing a source of metabolic precursors demanded by the transformed cell

    Multiple Wnt/ß-Catenin Responsive Enhancers Align with the MYC Promoter through Long-Range Chromatin Loops

    Get PDF
    Inappropriate activation of c-Myc (MYC) gene expression by the Wnt/ß-catenin signaling pathway is required for colorectal carcinogenesis. The elevated MYC levels in colon cancer cells are attributed in part to ß-catenin/TCF4 transcription complexes that are assembled at proximal Wnt/ß-catenin responsive enhancers (WREs). Recent studies suggest that additional WREs that control MYC expression reside far upstream of the MYC transcription start site. Here, I report the characterization of five novel WREs that localize to a region over 400 kb upstream from MYC. These WREs harbor nucleosomes with post-translational histone modifications that demarcate enhancer and gene promoter regions. Using quantitative chromatin conformation capture, I show that the distal WREs are aligned with the MYC promoter through large chromatin loops. The chromatin loops are not restricted to colon cancer cells, but are also found in kidney epithelial and lung fibroblast cell lines that lack de-regulated Wnt signaling and nuclear ß-catenin/TCF4 complexes. While each chromatin loop is detected in quiescent cells, the positioning of three of the five distal enhancers with the MYC promoter is induced by serum mitogens. These findings suggest that the architecture of the MYC promoter is comprised of distal elements that are juxtaposed through large chromatin loops and that ß-catenin/TCF4 complexes utilize this conformation to activate MYC expression in colon cancer cells

    Protein Networks as Logic Functions in Development and Cancer

    Get PDF
    Many biological and clinical outcomes are based not on single proteins, but on modules of proteins embedded in protein networks. A fundamental question is how the proteins within each module contribute to the overall module activity. Here, we study the modules underlying three representative biological programs related to tissue development, breast cancer metastasis, or progression of brain cancer, respectively. For each case we apply a new method, called Network-Guided Forests, to identify predictive modules together with logic functions which tie the activity of each module to the activity of its component genes. The resulting modules implement a diverse repertoire of decision logic which cannot be captured using the simple approximations suggested in previous work such as gene summation or subtraction. We show that in cancer, certain combinations of oncogenes and tumor suppressors exert competing forces on the system, suggesting that medical genetics should move beyond cataloguing individual cancer genes to cataloguing their combinatorial logic

    In Vivo Evolution of Tumor-Derived Endothelial Cells

    Get PDF
    The growth of a malignant tumor beyond a certain, limited size requires that it first develop an independent blood supply. In addition to providing metabolic support, this neovasculature also allows tumor cells to access the systemic circulation, thus facilitating metastatic dissemination. The neovasculature may originate either from normal blood vessels in close physical proximity to the tumor and/or from the recruitment of bone marrow-derived endothelial cell (EC) precursors. Recent studies have shown that human tumor vasculature ECs may also arise directly from tumor cells themselves and that the two populations have highly similar or identical karyotypes. We now show that, during the course of serial in vivo passage, these tumor-derived ECs (TDECs) progressively acquire more pronounced EC-like properties. These include higher-level expression of EC-specific genes and proteins, a greater capacity for EC-like behavior in vitro, and a markedly enhanced propensity to incorporate into the tumor vasculature. In addition, both vessel density and size are significantly increased in neoplasms derived from mixtures of tumor cells and serially passaged TDECs. A comparison of early- and late-passage TDECs using whole-genome single nucleotide polymorphism profiling showed the latter cells to have apparently evolved by a process of clonal expansion of a population with a distinct pattern of interstitial chromosomal gains and losses affecting a relatively small number of genes. The majority of these have established roles in vascular development, tumor suppression or epithelial-mesenchymal transition. These studies provide direct evidence that TDECs have a strong evolutionary capacity as a result of their inherent genomic instability. Consequently such cells might be capable of escaping anti-angiogenic cancer therapies by generating resistant populations

    Genomics and proteomics approaches to the study of cancer-stroma interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development and progression of cancer depend on its genetic characteristics as well as on the interactions with its microenvironment. Understanding these interactions may contribute to diagnostic and prognostic evaluations and to the development of new cancer therapies. Aiming to investigate potential mechanisms by which the tumor microenvironment might contribute to a cancer phenotype, we evaluated soluble paracrine factors produced by stromal and neoplastic cells which may influence proliferation and gene and protein expression.</p> <p>Methods</p> <p>The study was carried out on the epithelial cancer cell line (Hep-2) and fibroblasts isolated from a primary oral cancer. We combined a conditioned-medium technique with subtraction hybridization approach, quantitative PCR and proteomics, in order to evaluate gene and protein expression influenced by soluble paracrine factors produced by stromal and neoplastic cells.</p> <p>Results</p> <p>We observed that conditioned medium from fibroblast cultures (FCM) inhibited proliferation and induced apoptosis in Hep-2 cells. In neoplastic cells, 41 genes and 5 proteins exhibited changes in expression levels in response to FCM and, in fibroblasts, 17 genes and 2 proteins showed down-regulation in response to conditioned medium from Hep-2 cells (HCM). Nine genes were selected and the expression results of 6 down-regulated genes (<it>ARID4A</it>, <it>CALR</it>, <it>GNB2L1</it>, <it>RNF10</it>, <it>SQSTM1</it>, <it>USP9X</it>) were validated by real time PCR.</p> <p>Conclusions</p> <p>A significant and common denominator in the results was the potential induction of signaling changes associated with immune or inflammatory response in the absence of a specific protein.</p
    • …
    corecore