104 research outputs found

    Mitochondrial precursor proteins are imported through a hydrophilic membrane environment

    Get PDF
    We have analyzed how translocation intermediates of imported mitochondrial precursor proteins, which span contact sites, interact with the mitochondrial membranes. F1-ATPase subunit β(F1β) was trapped at contact sites by importing it into Neurospora mitochondria in the presence of low levels of nucleoside triphosphates. This F1β translocation intermediate could be extracted from the membranes by treatment with protein denaturants such as alkaline pH or urea. By performing import at low temperatures, the ADP/ATP carrier was accumulated in contact sites of Neurospora mitochondria and cytochrome b2 in contact sites of yeast mitochondria. These translocation intermediates were also extractable from the membranes at alkaline pH. Thus, translocation of precursor proteins across mitochondrial membranes seems to occur through an environment which is accessible to aqueous perturbants. We propose that proteinaceous structures are essential components of a translocation apparatus present in contact sites

    A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1

    No full text
    The yeast protein cytochrome c peroxidase (Ccp1) is nuclearly encoded and imported into the mitochondrial intermembrane space, where it is involved in degradation of reactive oxygen species. It is known, that Ccp1 is synthesised as a precursor with a N-terminal pre-sequence, that is proteolytically removed during transport of the protein. Here we present evidence for a new processing pathway, involving novel signal peptidase activities. The mAAA protease subunits Yta10 (Afg3) and Yta12 (Rca1) were identified both to be essential for the first processing step. In addition, the Pcp1 (Ygr101w) gene product was found to be required for the second processing step, yielding the mature Ccp1 protein. The newly identified Pcp1 protein belongs to the rhomboid-GlpG superfamily of putative intramembrane peptidases. Inactivation of the protease motifs in mAAA and Pcp1 blocks the respective steps of proteolysis. A model of coupled Ccp1 transport and N-terminal processing by the mAAA complex and Pcp1 is discussed. Similar processing mechanisms may exist, because the mAAA subunits and the newly identified Pcp1 protein belong to ubiquitous protein families

    Mitochondrial signal peptidases of yeast: the rhomboid peptidase Pcp1 and its substrate cytochrome C peroxidase

    No full text
    The rhomboid peptidase Pcp1 of yeast is the first mitochondrial enzyme of this new class of serine peptidases. Pcp1 is an integral part of the inner membrane and was identified by its signal peptidase activity responsible for processing of the intermediate of cytochrome c peroxidase (iCcp1) to the mature enzyme. Here we describe studies on the expression of the PCP1 gene. Proteolytic processing of Pcp1 itself was found. The precursor and the intermediate of Ccp1 were localized to the inner membrane. The results confirm our previous report on a two-step processing pathway of cytochrome c peroxidase and the identification of the signal peptidases involved
    corecore